· NAME: ARAVINTH

Math 220 - Worksheet 1 2nd Feb & EXAM 1: 15%

2nd March & EXAM 2: 15%

6th April e · EXAM 3: 15%

1. A. Plot the points (1,2) and (4,-2) on the graph below.

·RECITATION GRADE:

5%

· WHW: 15%

· OHW:10%

E . FINALS: 25%

=) Written HW to be submitted at the homework bux mear carduell 120

B. Find the distance between (1,2) and (4,-2). (Hint: One can use the Pythagorean Theorem.)

(Pythagorean theorem) talk us that given 2 coordinates (2, , y.) and (X_2, Y_2) , the distance between the 2 pants are given by J(x2-x1)2+(42-41)2. . In this case, (x, y,) = (1,2) and (n,14) 15 (4,-2). So,

 $\sqrt{(4-1)^2+(-2-2)^2} = \sqrt{3^2+(-4)^2}$ C. Find the equation for all points 5 units away from the point (1,2). Sketch $= \sqrt{25}$ the set of these points in the graph above.

> Notes on function transformations (1)f()()+d => Vertical translation up by d units (2) f(x) - d => Vertical translation Jown by dunits (3) f(jufc)=) Horizontaltranslation Seft c units. (f)f(z-c) => Horizontal translation right c units.

B.
$$(-\infty,4)$$

4. Find the equation of the line that goes through
$$(1,1)$$
 and $(3,7)$.

Equation for a line given 2 points,
$$(x_1, y_1)$$
 and (x_2, y_2) : $(y-y_1) = m(x-x_1)$, where m is the gradient, $m = \frac{y_2-y_1}{X_2-x_1}$ $\int So_r$ we use the 2 coordinates given (x_1, y_2) and (x_2, y_2) to find the gradient.

Let
$$(\chi_1, 1, y_1) = C1, 1)$$
 and (χ_1, y_2) be (χ_1, χ_2) . Then, $m = \frac{y_2 - y_1}{\chi_1 - \chi_1} = \frac{7 - 1}{3 - 1} = \frac{6}{2} = 3$.

Then, plugging in the respective values into the equation y-y, = m(x-xi), we get y-1=3(x-1)

5. Find the equation of the line with slope 4 that goes through
$$(-3,5)$$
. $\Rightarrow y-1=3x-3$

5. Find the equation of the line with slope 4 that goes through
$$(-3,5)$$
. $\Rightarrow y-1=3x-3$
In this case, unlike question 4, we are given a point and the slope.

The slope is the gradient, so we can skip the process of finding m.

Afren the equation, $(y-y_1)=m(x-x_1)$, $m=4$ and $x_1=3$, $y_1=5$. So,

 $y-S=4(x-(-3))=1$ $y-5=4(x+3)=3$ $y-5=4x+12$

6. Fill in the chart below:

$\frac{x}{0}$	$\frac{h(x)}{3}$	$\frac{w(x)}{2}$	$(h+w)(x)$ $(h+\omega)(x)=h(x)+\omega(x)$ $= h(x)+\omega(0)$ $= 3+2=5$	$(h \circ w)(x) = h(w(x))$ $(h \circ w)(x) = h (w(x))$ $= h(w(0))$ $= h(2) = 6$	Ne are Jefrning 2 function operation hore. Addition of functions:
1	7	0	(h+w1(x)= h(x)+w(x) = h(1)+w(1) = 7+0 = 7.	(how)(x)= h(w(x)) =h(v)=3.	- (h+w)(x) = h(n) + w(n), and composition of
2	6	1	(hfw)(10)= h(n)+w(2) = h(1)+w(2) = h+(=7.	(how) (x)= h (w(xs) = h(w12)) = h(1)=7.	- functions: (how)(x) ≥h(w(xo).

7. A person standing 100 feet away from the base of a building observes that the angle between level ground and the top of the building is 50°. How tall is the · Remember the 3 try building?

. In thy rase, one have the not arent side with (00f) respect to the angle given, 50°. We want to find the

height of the building, which is opp the 50°. So, we use tan 0= opp => fan (50°) = Opp = 100 tan (50°).

formulus! Given a torange

· Tan (B)= Opp

- **8.** For some choice of the parameters a, b, c, and d, the function $y = a \sin(bx+c) + d$ is plotted above. Assume that a > 0 and b > 0.
 - A. Find d. To find I we want to make sin(bx+c)=0.
 - **B.** Find a.
 - C. Find b.
 - **D.** Find c.

- **9.** Above is the graph of y = g(x).
 - **A.** What is the domain of g(x)?

In the oc-values that y-gues is defined for-Su, [-2,3).

B. What is the range of g(x)?

Tithe set of y-values of good. So, [-2,2) and (3,6).

C. Where is g(x) increasing? The strong and we marked from -2 to 0, g(x) value increases. So, it increases in the domain [-2,0].

D. Where is g(x) decreasing? However, as it increases from [-2,3], the y-value decreases, So, in [0,3], g(x) is

10. Find the roots of the polynomial $2x^2 - 5x - 3$.

Formula, for frading roots given a polynomial equation 0.002 + bntc, $\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ So, applying this formula, $\chi = -(-5) \pm \sqrt{(-5)^2 - 4(-3)(2)} = \frac{5 \pm \sqrt{25 + 24}}{24}$

$$\frac{5}{2} = \frac{5}{2} + \frac{1}{2} = \frac{5}{2} + \frac{1}{2} = \frac{1}$$