Key concepts

· We covered the idea of limits correptually and found a few ways to raladate them.

Vints form the foundation for our study of Caladus.

Verivotine

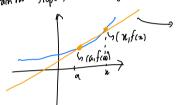
Verivotine

- Seant & Tangent lines

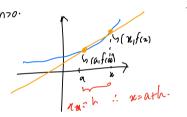
Det I Seart lines: Given or curve, a secont is a line that passes through any 2 points in the curve.

· Recall that are used the slope of the secont line to a fundion at a point (a, fax) to estimate the rate of change, or the rate at who of

· We obtain the slope of the secont by choosing a value of x near a and Sreavy a line through the points (a, fear) and (re, feri). The slope of the second line through the points: $(a_i f(a))$ and $(x_i f(x))$ is given by: $f(x_i f(a))$ This is called the quittent of flavorine.



- Note that we can also calculate the slope of a secant line to a function of a value or by using the same eggs but expressing it as outh, Where hoo.

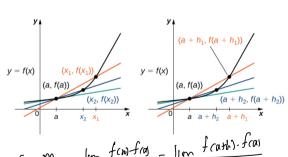


we can also calculate the slope of a second time to
$$\frac{f(x)-f(a)}{x-a} = \frac{f(x)-f(a)}{(a+h)-f(a)}$$

$$= \frac{f(x)-f(a)}{(a+h)-f(a)}$$

$$= \frac{f(x)-f(a)}{(a+h)-f(a)}$$

• Note that as 22 7 a, 1) The slope of the secont lines provide a better estimate of the rate of change of the function of a 2) The second lines themselves appoint the tangent line to the function at a, which represents the limit of the



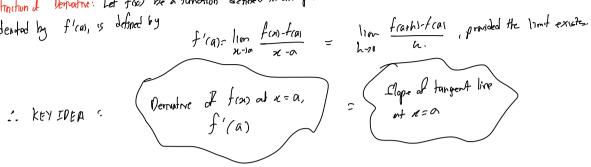
$$\frac{1}{100} = \lim_{n \to \infty} \frac{f(n) - f(n)}{x - a} = \lim_{n \to \infty} \frac{f(a+b_n) - f(a)}{a}$$

Definition of tangent line: Let food be a function defined in an open interval containing a. The tangent line to from at a ic the line $m_{fan} = \lim_{z \to a} \frac{f(x) - f(a)}{z - a}$ or $m_{fan} = \lim_{h \to 0} \frac{f(a+b) - f(a)}{h}$, provided the limit exists passing through the point (a, fca) having slope:

• The type of limit we just computed $m_{tan} = \lim_{z \to a} \frac{f(x) - f(a)}{z - a}$ or $\lim_{z \to a} \frac{f(x) - f(a)}{z - a}$

Detroition of Deportue: Let food be a function defined in an open interval containing a. The derivative of the function food at as

dented by firm, is defined by



Average velocity:
$$\frac{S(f1-s(a))}{f-a}$$

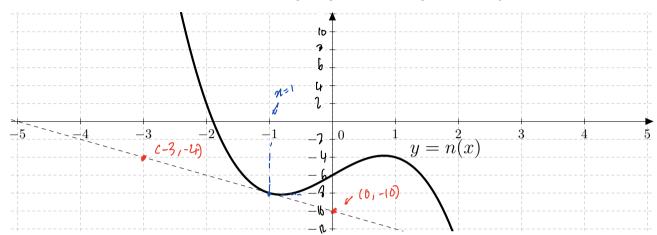
Instanteous Velouty =
$$S'(f) = \lim_{f \to a} \frac{S(f)-S(a)}{f-a}$$

Name:

Recitation Instructor:

Recitation Time:

Homework #3 is due at 5:00 PM on **Wednesday**, Feb. 1, in your *recitation's* homework box near Cardwell 120. This is due on Wednesday so you work the problems before Exam 1!



1. The function y = n(x) is graphed above in solid bold. There is also a dotted line graphed. Find the following two values.

It is fine densitive of function p(x) is the densitive of function p(x).

A.
$$n(-1) = -8$$

B.
$$n'(-1) =$$

2. Using the limit definition of the derivative, find the derivative of $\frac{1}{x}$ at $x = \frac{10 - (-4)}{0 - (-5)}$

$$f(n)=\frac{1}{2}$$
 at $x=4$.

Here
$$f(n)=\frac{1}{x} \wedge \alpha=4$$
.

:
$$f'(a) = \lim_{h \to 0} \frac{f(4+h)-f(4)}{h} = \lim_{h \to 0} \frac{1}{4+h} - \frac{1}{4} = \lim_{h \to 0} \frac{1}{4+h^2} - \frac{1}{4h}$$

$$= \lim_{h \to 0} \frac{1}{4h} - \frac{1}{4h} -$$

= - 1/16 # -

3. Let
$$w(x) = 5x^2 + 3x + 3$$
.

A. Using the limit definition of the derivative, find w'(3). $w'(3) = \lim_{h \to 0} \frac{w(3+h) - w(3)}{h} = \lim_{h \to 0} \frac{5(3+h)^2 + 3(3+h) + 3 - [5 \cdot 3^2 + 3 \cdot 3 + 3)}{h}$ $= \lim_{h \to 0} \frac{5(4+6h+h^2) + 4 + 5h + 3 - 57}{h}$ $= \lim_{h \to 0} \frac{45 + 30h + 5h^2 + 412 + 3h - 57}{h}$ $= \lim_{h \to 0} \frac{36h + 5h^2 + 3h}{h} = \lim_{h \to 0} 30 + 5h + 3$

B. Find the equation for the tangent line to y = w(x) at x = 2.

$$m_{fan} = f'(3) = 33.$$
 $f(3) = 57$
 $\therefore (y-57) = 33(x-3).$

4. Using the limit definition of the derivative, find f'(3) given that $f(x) = \sqrt{x+2}$.

$$f(x) = \sqrt{x+2} \text{ of } x=3.$$

$$f'(3) = \lim_{h \to 0} \frac{f(2fh)-f(3)}{h} = \lim_{h \to 0} \frac{\sqrt{3+h+2} - \sqrt{5}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{5+h} - \sqrt{5}}{h}$$

$$= \lim_{h \to 0} \frac{(\sqrt{5+h} + \sqrt{5})}{h} = \lim_{h \to 0} \frac{1}{\sqrt{5+h} + \sqrt{5}}$$

$$= \lim_{h \to 0} \frac{(\sqrt{5+h} + \sqrt{5})}{h} = \lim_{h \to 0} \frac{1}{\sqrt{5+h} + \sqrt{5}}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{5+h} + \sqrt{5}}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{5+h} + \sqrt{5}}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{5+h} + \sqrt{5}}$$

- **5.** When throwing a softball directly upward from a height of 5 ft with an initial velocity of 50 ft/sec, the height of the softball after t seconds is given by $h(t) = -16t^2 + 50t + 5$ (until the ball hits the ground).
 - **A.** Using the limit definition of the derivative, find h'(1).

Li Sam us above.

B. Using your answer in Part A, is the ball going upward or going downward one second after being thrown?

wn?

-- h'(1) > 0.

-- hoing apwar

-- h CF)