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Abstract
In this paper, we will talk about how Mahler Measure arises in the study of Fuglede-Kadison

determinant. The Fuglede-Kadison Determinant is the generalisation of determinants in the
Finite Dimensional Hilbert Spaces to the infinite dimensional spaces. One such instance where
this occurrence arises naturally is in the study of the multiplication operators in the Hilbert
space of all complex-valued functions on the unit circle. In order to understand how the Mahler
Measure arises in the study of Fuglede-Kadison determinants in this space, our methods involve
the use of the Group Von Neumann Algebra, Von Neumann trace, spectral family and the spectral
density function of the multiplication operator.

1 Introduction

In this introduction, we will show the flow of the paper. Firstly, we will define the tools needed
to we will be discussing in this paper: L2(S1) Hilbert Space, self-adjoint operators, the multiplica-
tion operator we will be studying in the L2(S1) Hilbert Space specifically, Von Neumann Algebra,
Von Neumann Trace, Spectral Family and Spectral Density Function and finally establishing the
connections between the Mahler Measure and Fuglede-Kadison determinant.

2 Key Definitions

The L2(S1) is the Hilbert Space of all complex-valued functions on the unit circle. It is a class of
functions with which Fourier series are most naturally associated with. As an Hilbert Space, L2(S1)
is a complete inner product space with the associated inner product:

〈x(t), y(t)〉 =
∫ 2π

0
x(t)y(t)dt

∀x(t), y(t) ∈ L2(S1). The length of a function x(t) is ‖ x(t) ‖=
∫ 2π

0 x(t)x(t)dt =
∫ 2π

0 |x(t)|
2dt.

We shall now talk about self-adjoint hilbert operators in Hilbert Spaces.

Definition 2.1 Self-Adjoint Hilbert Operators Let T : H → H be a bounded linear operator, where H is a
hilbert space. Then, the hilbert-adjoint operator T∗ of T is the operator:

T∗ : H → Hsuchthat〈Tx, y〉 = 〈x, T∗y〉

∀x, y ∈ H.
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T is said to be self-adjoint if T∗ = T. Also, note that ‖ T∗ ‖=‖ T ‖. Now, there is an important
theorem we should know before proceeding:

Theorem 2.1 Let T : H → H be a bounded linear operator on a Hilbert Space H. Then: (a) If T is self-
adjoint, 〈Tx, x〉 is real ∀x ∈ H. (b) If H is complex and 〈Tx, x〉 is real ∀x ∈ H, the operator T is self-adjoint.

Now, let’s head on to the multiplicative operator Mg, where g(x) is a bounded complex-valued
function in L2(S1). Firstly,

Mg : L2(S1)→ L2(S1).

However, we need to take note that Mg might not always be a self-adjoint operator. Therefore, given
Mg, we can construct a self-adjoint operator Mgĝ. This will be shown in the following section.

2.1 Constructing Self-Adjoint Operator

Let us express Mg as g(t) = ∑n
i=m citi and Mg∗ as g∗(t).

We need to find Mg∗ such that

〈Mg( f1), f2〉 = 〈 f1, Mg∗( f2)〉.
From the definition above, we see that, therefore the operator Mg∗ has to satisfy the following
expression: ∫ 2π

0
g(e2πiθ) f1(θ)dθ =

∫ 2π

0
f1(θ)g(e2πiθ) f2(θ).

Therefore, g∗(t) = ∑n
i=m cit−i. From here, we can obtain Mgg∗ from MgMg∗ . We shall denote gg∗ as

f for simplification. Thus, Mgg∗ = M f .

2.2 Group Von Neumann Algebra Von Neumann Trace

Definition 2.2 Group von Neumann algebra The Group von Neumann algebra ν(G) is defined as the algebra
of G− equivariant bounded linear operators from `2(G) to `2(G)

ν(G) := B(`2(G))G.

An important feature of the group von Neumann algebra is its standard trace.

Definition 2.3 Von Neumann Trace The von Neumann trace on ν(G) is defined by

trν(G) : ν(G)→ C, f 7→ 〈 f (e), e〉`(G)

While the Group Von Neumann algebra and the Von Neumann trace are defined on the hilbert
space `2(G), this is highly relevant to our case of L2(S1) space due to the following fact. In our
special case, the group G we will be dealing with is Z. The Fourier transform yields an isometric
Z− equivariant isomorphism `2(Z) ∼=L2(S1). Hence,

ν(Z) = B(L2(S1))Z.

We obtain an isomorphism

L∞(S1) ∼= ν(Z)

by sending f ∈ L∞(S1) to the Z− equivariant operator M f : L2(S1) → L2(S1), g 7→ g · f , where
g · f (x) is defined by g(x) f (x). Under this identification, the trace becomes

trν(Z) : L∞(S1)→ C, f 7→
∫

S1
f dµ.

2



2.3 Spectral Family

Definition 2.4 Spectral Family A real spectral family (or real decomposition of unity) is a one-parameter
family ξ = (Eλ)λ∈R of projections defined on the hilbert space H, which depends on a real parameter λ and
is such that:

Eλ ≤ Eµ(λ ≤ µ) lim
λ→−∞

Eλx = 0 lim
λ→∞

Eλx = xEλ+0x = lim
µ→λ+0

Eµx = Eλx(x ∈ H)

ξ is called the spectral family on an interval [a, b] if Eλ = 0 for λ < a and Eλ = I for λ > b.

2.3.1 Spectral family for M f

Now, we shall discuss the spectral density function for the operator M f . It is the family of projec-
tions for the varying parameter λ:

E : λ→ Mχ{θ∈[0,2π]| f (θ)<λ
.

An example will be given in the images. (Add these to the appendix too)

3 Spectral Density function

Definition 3.1 Spectral Density Function Let U and V be Hilbert ν(G)-modules. Let f : dom( f ) ⊂ U →
V be a G− equivariant closed densely defined operator. Then, for λ ∈ R the spectral projection E f ∗ f

lambda2 is
G-equivariant and

F( f )(λ) = dimν(G)(im(E f ∗ f
lambda2)).

Thus, for our case in L2(S1),

F( f )(λ) = dimν(G)(im(E f ∗ f
lambda2))

= trν(Z)(E f ∗ f
lambda2)

= 〈E f ∗ f
lambda2(1t0), 1t0)〉

=
∫

χ{θ∈[0,2π]| f (θ)<λdθ

This is essentially the length of the interval where f (e2πiθ) < λ2. An example will be given in the
images. (Add these to the appendix too)

4 Fuglede-Kadison Determinant

Definition 4.1 Fuglude-Kadison Determinant Let f : U → V be a morphism of finite dimensional Hilbert
ν(G)-modules with spectral density function F = F( f ). Define its (generalised) Fuglede-Kadison determi-
nant

detν(G)( f ) ∈ [0, ∞)

by detν(G)( f ) := exp(
∫ ∞

0+ ln(λ)dF > −∞, otherwise 0.
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We also know that the determinant of the multiplication matrix can be defined through the
Mahler Measure, as follows:

det(M f ) = exp(
∫

S1
ln | f (z)| · χ{u∈S1| f (u) 6=0}dvolZ)

where the expression on the right hand side is the mahler measure.
Thus, we can see that ∫ ∞

0+
ln(λ)dF =

∫
S1

ln | f (z)| · χ{u∈S1| f (u) 6=0}dvolZ
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