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Abstract

In this paper, we will talk about how Mahler Measure arises in the study of Fuglede-Kadison
determinant. The Fuglede-Kadison Determinant is the generalisation of determinants in the
Finite Dimensional Hilbert Spaces to the infinite dimensional spaces. One such instance where
this occurrence arises naturally is in the study of the multiplication operators in the Hilbert
space of all complex-valued functions on the unit circle. In order to understand how the Mahler
Measure arises in the study of Fuglede-Kadison determinants in this space, our methods involve
the use of the Group Von Neumann Algebra, Von Neumann trace, spectral family and the spectral
density function of the multiplication operator.

First, we will establish that the operator is a self-adjoint hilbert operator, otherwise we need
to construct one such operator from the operator given. Next, we need to find the spectral family
of the operator and use it to build the spectral density function. The spectral density function
is used to define the Generalised Fuglede-Kadison determinant, and then we will see how the
Mahler Measure arises in the determinant.
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1 `2(Z) and the Right Multiplication Operator Rp(t)

The Hilbert Space `2(Z) is defined as:

`2(Z) = {
∞

∑
n=1

Cn[n]|
∞

∑
i=1
|Ci|2 < ∞}

where Ci ∈ C.
Note that elements in `2(Z) can be denoted as polynomials in this manner:

∞

∑
n=1

Cn[n]→
∞

∑
n=1

Cntn

where t acts as an empty parameter.
The linear operator we are interested in is the Right shift/transform operator Rp(t), where p(t) ∈ `2(Z).

Rp(t) : `2(Z)→ `2(Z)

∑
h∈Z

Ch[h] 7→ ∑
h∈Z

Ch[hg]
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In terms of polynomials,

∑
h∈Z

Chth 7→ ∑
h∈Z

Chthg.

The determinant of the linear operator Rp(t), det(Rp(t)) is the Fuglede-Kadison determinant. However, we
can also prove that the det(Rp(t)) is the same as the Mahler measure of the polynomial, p(t), which we will
prove as we go on.

2 `2(Z) ∼= L2(S1)

The `2(Z) Hilbert Space is isomorphic to the Hilbert space of all complex-valued functions on the unit circle,
L2(S1) [8] by fourier transform. We can define the transform in the following manner:

∑
n∈Z

Cntn 7→ (z ∈ C 7→
∞

∑
−∞

Cnzn)

where the expression in the brackets on the right hand side denotes a function in L2(S1).
As `2(Z) ∼= L2(S1), there is an analogous right shift linear operator, Mg ∈ L∞, in L2(S1). Mg denotes the
multiplication of every function f ∈ L2(S1) with function g ∈ L2(S1), with the standard function multiplica-
tion operation, ( f · g)(x) = f (x)g(x). The set of all the bounded linear operators in L2(S1) is denoted by L∞.
This transform will aid us to prove that the Rp(t), det(Rp(t)), as transforming to an isomorphic space allows
us to tap into a different set of tools which are easier to use.

3 Establishing the Self-adjoint Hilbert Operator
From here on forth, we will focus on L2(S1). Let the multiplication of function g ∈ L2(S1) bounded operator
be denoted by Mg.

Mg : L2(S1)→ L2(S1).

We need to take note that Mg might not always be a self adjoint hilbert operator and Spectral Families can
only be constructed for self-adjoint bounded linear operators [1]. Therefore, We need to figure out how to
construct a self-adjoint hilbert operator if the given operator Mg does not satisfy the given condition above.
Mg is said to be a self-adjoint operator if ∀ f1, f2 ∈ L2(S1), 〈(Mg)( f1), f2〉 = 〈 f1, (Mg)( f2)〉 [2].
Suppose Mg is not self-adjoint.
Thus, we need to find Mg∗ such that

〈Mg( f1), f2〉 = 〈 f1, Mg∗( f2)〉.

.
Let us express Mg as g(t) = ∑n

i=m citi and Mg∗ as g∗(t).
From the definition above, we see that, therefore the operator Mg∗ has to satisfy the following expression:∫ 2π

0
g(e2πiθ) f1(θ) f2(θ)dθ =

∫ 2π

0
f1(θ)g(e2πiθ) f2(θ)dθ.

From here, we can deduce that in order for 〈Mg( f1), f2〉 = 〈 f1, Mg∗( f2)〉, g(e2πiθ) = g(e2πiθ).
Therefore, g∗(t) = ∑n

i=m cit−i.
From here, we can obtain Mgg∗ from Mg Mg∗ . We shall denote gg∗ as f for simplification. Thus, Mgg∗ = M f .
We will be using M f to denote the self-adjoint operator from this point on wards in this paper.
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4 Spectral Family of M f

A real spectral family (or real decomposition of unity) is a one-parameter family ξ = (Eλ)λ∈R of projections
defined on the hilbert space L2(S1), which depends on a real parameter λ and is such that:

Eλ ≤ Eµ

lim
λ→−∞

Eλx = 0

lim
λ→∞

Eλx = x

Eλ+0x = lim
µ→λ+0

Eµx = Eλx

when whenλ ≤ µ and x ∈ L2(S1) [4].
ξ is called the spectral family on an interval [a, b] if Eλ = 0 for λ < a and Eλ = I for λ > b [4].
In our specific case of Mg in L2(S1), although the elements are complex-valued functions on the unit circle,
the spectral family is the family of projections for the varying parameter λ:

E : λ→ Mχ{θ∈[0,2π]| f (θ)<λ} .

The χ{θ∈[0,2π]| f (θ)<λ} denotes the characteristic function which denotes the value of 1 to the range of the
function f which falls below the parameter λ and 0 to the range of the function which is above the parameter
λ. This results in a discontinuous function where the range is {0, 1}. We, then, multiply this characteristic
function with f , whereby the range of the intervals of function f which falls below lambda is preserved,
whilst the rest of the function becomes 0. This is the spectral family for that specific λ parameter and we
denote it by Eλ. (Take a look at the Appendix for a few examples).
Although L2(S1) is a complex-valued function on a unit circle, the parameter λ falls on the interval [m, M] ⊂
R, where m = in f||x||=1〈Mg( f ), f 〉 and M = sup||x||=1〈Mg( f ), f 〉 [4].

5 Spectral Density Function of M f

Let U and V be Hilbert ν(G)-modules. Let f : dom( f ) ⊂ U → V be a G− equivariant closed densely defined
operator. Then, for λ ∈ R the spectral projection E f ∗ f

lambda2 is G-equivariant and

F( f )(λ) = dimν(G)(im(E f ∗ f
lambda2)).

Thus, for our case in L2(S1),

F( f )(λ) = dimν(G)(im(E f ∗ f
lambda2))

= trν(Z)(E f ∗ f
lambda2)

= 〈E f ∗ f
lambda2(1t0), 1t0)〉

=
∫

χ{θ∈[0,2π]| f (θ)<λdθ

This is essentially the length of the interval where f (e2πiθ) < λ2 [5], where the trace is the Von Neumann
Trace [6].

6 Linking Fuglede-Kadison Determinant and Mahler Measure
Let us denote F( f )(λ) as F. Then, the Fuglede-Kadison determinant is the

detν(G)( f ) := exp(
∫ ∞

0+
ln(λ)dF)
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if the determinant is more than negative infinity. Otherwise, the determinant of the multiplication by function
f operator is 0 [7].

We also know that the determinant of the multiplication matrix can be defined through the Mahler
Measure, as follows:

det(M f ) = exp(
∫

S1
ln | f (z)| · χ{u∈S1| f (u) 6=0}dvolZ)

where the expression on the right hand side is the mahler measure.
Thus, we can see that ∫ ∞

0+
ln(λ)dF =

∫
S1

ln | f (z)| · χ{u∈S1| f (u) 6=0}dvolZ

7 Algorithm
In this section, we will use some computational tools to approximate the Spectral Density Function of a
function and verify that the Mahler measure is indeed to the Fuglede-Kadison determinant. The results are
added here while the code is added to the Appendix.
Here, we will need to use alternate definitions of Mahler Measure to compute it: Given P ∈ C[x], such that

P(x) = a ∏
i
(x− αi)

define the Mahler Measure of P as

M(P) = |a|∏
i

max{1, |αi|}

[3].
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A Appendices

A.1 Characteristic Function and Spectral Family of a given function
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A.2 Matlab Code to generate Spectral Density Function and Verify Mahler
Measure and Determinant
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