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2 Abstract

Let Y ,, be an orientable surface of genus g and n punctures, such that 2 —2g —n < 0.
Let f € Mod(X,,) denote an element in the mapping class group. The study of the
bounds of D(f) and Dy (f) is a dynamic field in geometric topology.

Given any automorphisms f of a connected orientable surface X, it is evident that
any virtual homological spectral radius for f is greater than or equal to 1. It is shown
by C.T. McMullen that any virtual homological spectral radius for a pseudo-Anosov
surface automorphism f is strictly lesser than the dilation if the invariant foliations for
f have prong singularities of odd order [McM13]. Since the topology of the mapping
torus depends only on the mapping class f, we denotes its topological type by Ny. A
celebrated theorem by Thurston [Thu98| asserts that Ny admits a hyperbolic structure
iff f is pseudo-Anosov. Kojiwa-Macshane proved that:

VOl(Mf)
In(D(f)) = s=—~p
P = 30
where My, x(X) and D(f) are the mapping torus, Euler characteristic of the surface and
the dilation of f respectively [Mcs15].

With references to these, Dr Thang Le conjectured relations between the spectral radius
of f acting on H(X,,,Z), and the volume of the mapping torus with respect to f,

IxX
(L2) ~ (0, f(x))’

where EAng varies over the finite covers of ¥ ,, to which f lifts.

Mf =

In this thesis, I will first explain the construction of the finite type covers of ¥/, via
monodromy representation. The existence and construction of lift of f, f, will be done
by the standard theorems in Algebraic Topology, Combinatorial Group Theory and Fox
Derivative Calculus respectively. We will obtain the spectral radius from each finite type
cover from the collection of all covers constructed and test the conjectures. All these the-
ory will be developed in this thesis, together with a brief introduction to Mapping Class
Groups and Pseudo-Anosov Maps. Then, I will explain how this theory is translated to
work on the code.

Results of the 4-sheeted cover will be explained thoroughly step-by-step and the results
for 5 and 6 sheeted covers will also be included. Finally, I will explain the checks we have
put in place to ensure the correctness of the algorithm before I conclude this thesis with
suggestions for improvement.
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3 Introduction

3.1 Thang Le’s Conjectures

Let X4, be an orientable surface of genus g with n punctures, such that:
X(Egn)=2—-29g—n<0.

We will assume that X,, has at least one boundary component, and that the genus
and the number of punctures is finite. The Mapping Class Group of X, ,, denoted as
Mod(%,,,), is the group of isotopy classes of orientation-preserving homeomorphisms of

)

g7n.

For any Mapping Class Group of £, f € Mod(X,,), the homological spectral radius
is defined to be the spectral radius of the induced linear automorphism of f on the first
homology of ¥ with complex coefficients. That is to say, it is the largest modulus for all
complex eigenvalues of f. : Hi(Xy,,C) — Hi(X,,,,C). For any connected finite cover 5
of ¥, let the automorphism f : X — ¥ be the lift of f.

5_ —~/

S
g > {gun
f l o J/

Zlglﬂ J >23,n

In this case, the homological spectral radius for f is said to be the virtual homological
spectral radius of f.

Let Dy(f) be the supremum of all virtual homological spectral radius, based on the col-
lection of all finite covers of ¥, ,, and the mapping torus associated to a mapping class f

is defined as M; = (a:())i(%'

The purpose of this project is to develop an understanding of the conjecture made by Dr
Thang Le and develop computational tools to test the conjecture. The conjecture made
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by Dr Thang Le suggests a a lower bound for logarithm of Dy(f) using the hyperbolic
volume of mapping torus M, with respect to any pseudo-Anosov function f:

VOl(Mf)

3.2 Framework and Motivation of this thesis

In this thesis, I will explain and develop the theoretical foundation that my software uses
to verify Thang Le’s bounds. For the purposes of my project, the surface we will specif-
ically focus on is the once-punctured torus, ¥; ;, where the number of genus g = 1 and

the number of punctures n = 1, and the pseudo-Anosov map that we will use is (? 1)

The mapping torus of the pseudo-Anosov is well studied: It happens to be the figure-8
knot complement and it is well known that the hyperbolic volume of the figure-8 knot
complement is 2.02988.

As the once-punctured torus, ¥, ; is an orientable surface of genus 1 with 1 puncture, the
euler characteristic of the surface, x(2;,1) is as follows:

X(B) =2-2(1) = (1)
=—1.

Then, modifying Thang Le’s general conjecture to our class of space, he proposes that:

My
log(Dy(f)) > 3]

~2.02988
371
~2.02988
3

= 0.21537695725.

Thus, we are required to show the following:

Dh(f) > 60'21537695725

= 1.24032936.
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Since Dy (f) is the supremum of the virtual homological spectral radii over the collection
of all finite cover, it suffices to construct 1 example of finite type cover of ¥, ; for the
bound to hold.

3.3 Introduction to the Software

The software works in the following stages:

A. Software prompts for the user input: the size of n to generate the group S, and
the generators of the fundamental group of the base space, ¥, ;

o The integer n will be used to construct all the possible finite n-sheeted covering
graphs using monodromy representation

o+ The generators of m(X;,), will each correspond to 1 edge in 3 ;

B. The software generates (Z') covering graphs, where r is the number of generators
of ™1 (2171).

o Note that this includes covering graphs which are also not connected. Thus,
after generating the covers, the software sieves through all the covers and
discards the disconnected covers.

C. Next, the software computes the fundamental group of the covering graph, Z/;.

o This is done through using theorems from Combinatorial Group Theory. This
step is important to check for which covers the pseudo-Anosov function f lifts.

D. We check for for which covers the pseudo-Anosov function f lifts, using standard
results from Algebraic Topology.

E. Once we have trimmed the collection of covers to those which are connected and
for which f lifts, we compute the homological representation using a variation of
Fox Derivatives.

F. From the homological representations, we compute the necessay eigenvalues and
verify the bounds.
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3.4 Organisation and Strategy of the Paper

The organisation of the paper generally follows that of the software. The first couple of
chapters are purely expository. They are added to provide the background in this topic.
In the remaining chapters, we provide an introduction to relevant theories vital to the
construction of the software. After each section, the computational steps motivated by
the chapter will be worked out in detail; we will work out the calculations step by step
for the specific case, f = <? 1) on 4-sheeted covers of ¥ ;.

Once, we have theoretically developed the construction of the software and showcased
the case mentioned in the previous paragraph, I will show the results and explain how
for the cases we have considered, the bound holds. Lastly, I will explain how I have
minimized the degree of error by adding in checks in the algorithm and will suggest on
improvements that can be made in the future.
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4 Mapping Class Groups

4.1 Introduction to Mapping Class Groups

Let ¥,, be the connected sum of g > 0 tori with b > 0 disjoint open disks removed
and n > 0 points removed from the interior. Let Homeo™ (3, ,,d(%,,)) represent the
group of orientation-preserving homeomorphisms of 3, ,, that restrict to the identity on
the boundary of ¥/ ,,, §(3,,). We give this group with the compact-open topology.

Definition 4.1 (Compact-Open Topology). Let X and Y be two topological spaces, and
let C(X,Y) denote the set of all continuous maps between X and Y. Given a compact
subset K of X and an open subset U of Y, let V(K,U) denote the set of all functions,
f € C(X,Y) such that f(K) C U. Then the collection of all such V(K,U) is a subbase
for the compact-open topology on C(X,Y).

The mapping class group of surface 3, denoted as Mod(X,,,) is the group:
Mod(3,,,) = mo(Homeo™t (5, ., 6(X,.1)))-

This means that we have base point preserving maps from the 0-dimensional sphere
(with a given base point) into the space of orientation-preserving homeomorphisms of

Y, that restrict to the identity on the boundary §(3,,) and these maps from the 0-
dimensional sphere to the homeomorphsms are collected into equivalence classes called
homotopy classes. Meaning, Mod(X,,,) is the group of isotopy classes of elements of
Homeo™ (3,,,, 8(3,.)), where the isotopies fix the boundary pointwise. If Homeog(3,,,, §(3,.,))
denotes the connected component of the identity in Homeo™ (3, ,,,(32,,)), then equiva-
lently we can define Mod(%,,,) as:

Homeo™ (3., 8(2,1))

MOd(Eg,n) = HOmeOO(Egﬂ’ 5(29,71)) ‘

Namely, it is the group of orientation-preserving homeomorphism modulo the relation of
isotopy.

Other than this definition, there are numerous variations in the definition of Mod (%, ),
which still results in the equivalent groups. In one such variation, mapping class groups
can be defined with respect to diffeomorphisms instead of homeomorphisms. It is also
possible to define mapping class groups with repsect to homotopy classes instead of
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isotopy classes. These definitions would result in isomorphic groups. In essence:

Mod(%,,) = mo(Homeo™ (3,,.,,6(3Z,.)))
~ Homeo" (%, ,,,6(2,.))/ homotopy
~ mo(Diff " (3,0, 0(Z,0)))
~ Diff" (30, 6(3gn))/ ~,

where Diff"(3,,,,8(2,,)) is the group of orientation-preserving diffeomorphims of ¥, ,,,
that are the identity on the boundary and ~ can be taken to be either smooth homotopy
relative to the boundary or smooth isotopy relative to the boundary.

There are a few things we need to take note of:

Punctures vs Marked points. Let Y, be a surface with n > 0 punctures. Then, at
certain times, it is more convenient to think of puncutures as marked points. Then, the
Mod(%, ) is the group of homeomorphisms of ¥, ,, that leave the set of marked points
invariant, modulo isotopies that leave the set of marked points invariant. Note that they
are invariant as a set, thus we can permute the marked points among themselves. How-
ever, when using homotopies instead of isotopies, we need to be watchful of the following
point: a homotopy of surfaces with marked points must not only send marked points to
marked points at all times but also must send ummarked points to unmarked points at
all times.

Boundaries vs Punctures. By the definitions we give the mapping class group, a key
difference between a surface with punctures and a surface with boundary is that, map-
ping classes are allowed to permute punctures on the surface (they are invariant as sets)
but it must preserve the individual boundary components pointwise. The same goes for
isotopies: they must fix each boundary pointwise, but they can rotate a neighborhood of
a puncture.

Exceptional Surfaces Note that for 4 surfaces called exceptional surfaces: the disk
D?, the annulus A, the once-punctured sphere S, and the twice-punctured sphere Sp o,
homotopy is not the same as isotopy unless we are dealing with the case of orientation-
preserving homeomorphisms. Thus, even when dealing with exceptional surfaces, the
variations in definitions of the mapping class group of these surfaces still result in equiv-
alent groups.

We will now calculate the mapping class groups of one of the simplest surfaces, the closed
disk D? C R?, using just the definition of the mapping class group.

Theorem 4.1. (The Alexzander Lemma) The group Mod( D?) is trivial.
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Proof. Let ¢ : D*> — D? be an arbitrary homeomorphism that fixes the boundary point-
wise. We want to show that for any given homeomorphism of D?, there exist an isotopy
of the homeomorphism to the identity homeomorphism on the disk, D2

Intuitively, at time ¢t = 0, we want the ¢ to act on D?. At time t = s, where 0 < s < 1,
we want ¢ to act on only the disk with radius 1 — s which is contained within D?. The
remaining region of D? will remained fixed. Thus, The annulus from radius 1 — s to 1
will remained fixed. This can be visualised by the diagram below:

T

R

The top of the cylinder denotes time ¢ = 0. Thus, ¢ acts on the entire D?. As we go
down cylinder at time ¢t = s, ¢ acts on the radius 1 — s, while the remaining region of
D? is fixed. This is depicted by the inverted cone inside the cylinder. Then, we can see
at t = 1, the entire D? is fixed, is the function acting on D? is the identity homeomorphism.

Thus, we define the homotopy from ¢ to the identity homeomorphism as:

[ A-te() 0L |z <1-—t
F(x,t)—{x 1 1ot el <1

for 0 < ¢t < 1 and we define F(z,1) to be the identity map of D?. This provides an

isotopy F' from ¢ to the identity, thus proving the statement.
|

Theorem 4.2. (Mapping Class Group of the Torus) The homomorphism
o : Mod(T?) — SL(2,Z)
given by the action on Hy(T* 7Z) = 7>

Proof. Any homeomorphism ¢ of T? gives the map ¢, : H(T? Z) — H\(T* Z). As ¢
is invertible, ¢, is an automorphism of H,(T? Z) = Z*. Homotopic maps induce the
same map on homology, and so the map ¢ — ¢, generates the map o : Mod(T?) —
Aut(Z? = GL(2,Z)). o(f) is an element of SIL(2,Z) as we know that the algebraic
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intersection numbers in T? correspond to determinants and orientation preserving home-
omorphism preserve algebraic intersection number.

Next, we need to show that ¢ is surjective. Any element M of SL(2,7Z) gives an orien-
tation preserving linear homeomorphism of R? which is equivariant with respect to the
deck transformation group Z2. Therefore, it descends to a linear homeomorphism ¢,; of
the torus T? = I%;. As we identified primitive vectors in Z* with homotopy classes of
oriented simple closed curves in T?, it follows that o([¢as]) = M, and so o is surjective.

Now, we show that o is injective. As T? isa K (G, 1)—space, there exists a correspondence:
{Homotopy classes of based maps T? — T?} +— {Homomorphisms Z* — Z*} (1)

Moreover, any element f of Mod(T?) has a representative ¢ that fixes a basepoint for T?.
So, if f € ker(o), then ¢ is homotopic (as a based map) to the identity, and it follows
that o is injective. In fact, it is possible to create the homotopy of ¢ to the identity
explicitly. Similar of that of the annulus, the straight-line homotopy between the identity
map of R? and any lift of ¢ is equivariant and thus descends to a homotopy between ¢
and the identity.

|

Surprisingly, it was discovered that the mapping class group for any surface can be gen-
erated by a composition of twists on any set of simple, closed curves that fill the surface.
These twists, which are called Dehn twists, can be viewed as the building blocks of map-
ping class groups. Dehn twist play the role for mapping class groups that elementary
matrices play for linear groups. This can be seen from the Dehn-Lickorish Theorem,
which states that the Mod(X,,,) is generated by finitely many Dehn twists about non-
separating simple closed curves, will be eventually seen a couple of sections below. Before
that, I will introduce the concept of intersection numbers and Dehn twists.

4.2 Dehn Twists

Now, we will define Dehn twists. This twist was introduced by Max Dehn, who originally
called it the screw map. Dehn twists play a central role in the theory of mapping class
group, which we will see later on. Before I start on Dehn twists, we need to introduce a
couple of preliminary concepts.

There are 2 natural ways to count the number of intersection points between 2 simple
closed curves in a surface which correspond to the algebraic intersection number and
geometric intersection number respectively: : sign and unsigned. The most intuitive way
to count the intersections between the homotopy classes of closed curves is to count the
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minimal number of unsigned intersections (unsigned being we do not take orientation
of the 2 curves into account). This idea is called the geometric intersection number.
Formally, the geometric intersection number between free homotopy classes a and b of
simple closed curves in a surface X, ,, is defined to be the minimal number of intersection
points between a representative curve in the class a and a representative curve in the
class b:

i(a,b) = min{lanNd|: a € a, € b}.

Readers interested in the algebraic intersection numbers can read more about it at
[Mar12].

Now, let’s consider the annulus A = S' x [0,1]. To orient A, we embed it in the (6,r)-
plane using the function:

0,t) = (6,t+1)
and the orientation is given by the standard orientation of the (6, r)-plane.

Let T : A — A be the twist map of A:
T(0,t) = (0 + 2t t).

The map T is an orientation-preserving homeomorphism that fixes the boundary of the
annulus, 6(A) pointwise. Note that instead of using 6 + 27t we could use § — 27t. The
first choice is a left twist, while the other is a right twist.

To visualise the difference, let’s take a look at the simple case of 2-torus, ;. For a
better intuition, we can think of this as a person walking along the curves on ;4. As
shown below (and proved later), let a and b be the set of simple closed curves on ¥
that fills it.

Then, a left twist on curve a results in a person walking along curve b. At the point of
intersection of curves a and b, then he turns left and walks along a. After he finishes
walking along curve a, he resumes walking on b, till he reaches his original point. Note
that in the left-twist, he walks against the original direction of a. This can be seen below:
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For a right twist on curve a, the person walks along curve b and at the point of intersection
of curves a and b, then he turns right and walks along a. After he finishes walking along
curve a, he resumes walking on b, till he reaches his original point. Note that in the
right-twist, he walks against the original direction of a. This can be seen below:

So, the + distinguishes the orientation of the twist.

Now, I will give the definition of the Dehn twist. Let ¥,, be an arbitrary (oriented)
surface and let o be a simple closed curve in Y, ,. Let N be a regular neighborhood
of o and choose an orientation-preserving homeomorphism ¢ : A — N. We obtain a
homeomorphism 75, : ¥,,, — X, ,, called a Dehn twist about «, as follows:

(2)

T if  in Xy, but not in V.

T . D ifre N
I(e) = {¢ o0 (@) i
Intuitively, this just means that for T,, we "perform the twist map 7" on the annulus A
and fix every point outside of N."

The Dehn twist can be viewed accordingly in 2 ways:

- I

Note that if the 2 curves oy and a4 are isotopic, then Ty, is isotopic to T, as well. That
is to say, they are well defined elements in Mod(%,,,).
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Dehn twists on the torus Let’s take a look at how the Dehn twist on the curves a and
b look like on the torus.

When we perform a twist on a on the torus, we can see that curve a is sent to itself (figure
on the left below) and curve b loops around curve a and b (figure on the right below).

When we perform a twist on b on the torus, we can see that curve b is sent to itself (figure
on the right below) and curve a loops around curve a and b (figure on the left below).

Dehn twists via Cutting and gluing Another way to think about dehn twists T, is
as follows: We can cut X, , along «, twist the neighborhood of one boundary component
through an angle of 27, and the re-glue along the cut components. These steps gives a
well-defined homeomorphism of S which is equivalent to T,,.
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Action on Simple Closed Curves Simple curves are curves that does not intersect
itself. By observing its action on the isotopy classes of simple closed curves on X, ,,, we
can understand T, further.

o Ifi(a,b) =0, then T,(b) = b.

o Else, if i(a,b) # 0, the isotopy class of T,(b) is determined as follows: given s
particular representatives 5 and « of b and a, each segment of [ intersecting « is
replaced with a segment that turns left, follows a around, and then turns right.
This is true no matter which way we orientate [3.

Left vs Right Once an orientation of Y, is fixed, the direction of a twist 7j, does
not depend on the orientation on a. This is because turning left is well-defined on an
oriented surface. The inverse map T, lis simply a twist about a on the other direction;
it is similarly defined to T,, with the twist map T replaced by its inverse T !.

Now, we shall briefly introduce the fact that that the mapping class group is generated
by the dehn twist.
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4.3 Dehn-Lickorish Theorem

Our main goal in this subsection is to introduce the Dehn-Lickorish Theorem and give a
sketch of it’s proof. Note that in this subsection, we will denote the surface by S or Sy
and the permutation group of size n as ¥, to avoid any confusion.

Definition 4.2. (Dehn-Lickorish Theorem) For g > 0, the mapping class group Mod(S,)
is generated by finitely many Dehn twists about non-separating closed curves.

In 1938, Dehn proved that Mod(S,) is generated by 2¢g(g — 1) Dehn twists [Dehl10].
Expanding on Dehn’s results, Mumford showed in 1967 that only Dehn twists about non-
separating curves were needed [Mum67]. Then, in 1964, Lickorish proved that Mod(S,)
is generated by the Dehn twists about the 3g — 1 non-separating curves as shown below
in the picture [Lic64].

13 Mg

In 1979, Humphries [Hum?77] proved that the twist about the 2g + 1 curves in the figure
below suffice to generate Mod(S,). These generators are often called the Humphries gen-
erators.

Punctures and Pure Mapping Class Groups. The Dehn-Lickorish Theorem is not
true for surfaces with multiple punctures as no composition of Dehn Twists can permute
the punctures. Let PMCS(S,,,) be denote the pure mapping class group of S, ,, which
is defined for the subgroup of Mod(Sy,) consisting of elements that fix each puncture
individually. The action of Mod(S,,,) on the punctures of S, results in the following
short exact sequence:

1 = PMod(Sy,) = Mod(S,,) = X, — 1,
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where Y, is the permutation group on the n punctures. Thus, we can see that in the case

n =1, PMCS(S,,) = MCG(S,,).

Outline of Proof of Dehn-Lickorish Theorem In proving the Dehn-Lickorish the-
orem, we need to prove a more general statement: we will prove that PMod(S,,) is
generated by finitely many Dehn Twist about non-separating simple closed surfaces for
any g > 1 and n > 0. We will first need give a sketch of a weaker statement that
PMod(S, ) is generated by the (infinite) collection of all Dehn Twist about nonseparat-
ing simple closed curves. The argument is a double induction on the number of genus
.9, and number of punctures, n, on the surface. The base case will be ;. In order to
motivate 2 important tools: the complex of curves and the Birman Exact Sequence. This

proof is not integral to the rest of this thesis, so interested readers can read more about
it in [Mar12].

4.4 Dehn Twist Generating the mapping class group of the once
punctured torus

As noted above, when the number of punctures n = 1, PMCS(S,,) = MCG(S,.).
Thus, the mapping class group of the once-puncutured torus is exactly the same as the
mapping class group of the 2-tours. Thus, the mapping class group of ¥, ; is the group
SLy(Z). By the Dehn-Lickorish theorem, we know that there are a finite number of
Dehn-Twists generating the mapping class group of the once-puncutured torus. Using
the set of generators constructed by Humphries, we can see that the set of Dehn twist
that generate Mod(X; ;) are the Dehn Twists performed on the curves a and b we have
seen before:
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On R, we can embed the 2-cell representation of the torus like this:

I

()
Y

0‘('0

The isomorphism Mod(X;) = SLy(Z) tells us that there are 2 matrices in SLyZ, each
of which corresponds to the Dehn twist on a and b.

First, note that there is a finite set of matrices generating SLo(Z).

Theorem 4.3. The generators of SLy(Z) are (é 1) and G (1)> [Con]

Note that the 2 simple closed curves a and b in X, ; fills the surface. We can view the

. . of .. . .
curve a as ie on the z-axis) and the b curve as [1] (ie on the y-axis). Thus, it turns

1

K
out that we can express any element of the mapping class group of the once-punctured
torus as a composition of the dehn twist on curve a, T,, and the dehn twist on curve b,

Tbi
11
T, — (O 1)

10

By studying the action of 7T, and 7 on a and b in X;;, we can understand how any
function ¢ € SLy(Z) act on Xy as ¢ can be expressed as a composition of 7, and 7.

We can see that generators T, and T acts on X ; accordingly:
« Action of T, on ¥ ;:

—a—a
—b—=b+a.

« Action of T}, on X ;:
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—a—=a+b
— b b.

Moreover, we can express the matrix A = as a composition of the dehn twist on

2 1
11
curve a, T,, and the dehn twist on curve b, T}:

-6 (Y

Thus, we can see that matrix A acts on the space filling curves of T? accordingly:

a—~a+b+a
b— b+ a.

Expressing the action of A in terms of the generator of the free group a and b, gives us
a way to study the matrix A with a computer.
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5 Pseudo-Anosov Mapping Classes

Pseudo-Anosov mapping classes are one of the 3 special types of mapping classes. In
this section, I will introduce the definition of pseudo-Anosov mapping classes. As these
mapping classes are intrinsically linked to the concept of measured singular foliations, I
will explain these foliations on the simple case of the torus first, and then generalise to
higher genus surfaces.

Once we have established the theory of pseudo-Anosov maps, we will show how Thurston’s
Construction and Penner’s construction can work together to construct pseudo-Anosov
mapping classes for any given surface.

For the case of the once-punctured torus X 1, it is easier to prove if a mapping class f €
Mod(X ), using the Nielsen-Thurston Classification theorem, applied to 3 ; via linear

algebra. Thus, I will introduce these and finally prove that (? 1) is pseudo-Anosov.

5.1 Definition of Pseudo-Anosov

Definition 5.1. (Pseudo-Anosov Mapping Classes) An element f € Mod(X,,) is called
pseudo-Anosov if there is a pair of transverse measured folaitions (F“, p,) and (F*, us)
on Ygn, a number X > 1, and a representative homeomorphism ¢ so that

(b(Fua,uu) = (Fua )\/Jlu)a and ,
1
O ) = (F°, 310

The measured foliations (F", p,) and (F%, ps) are called the unstable and stable foliation
respectively and the number X is called the stretch factor of ¢ or of f. Then, the map ¢
is called a pseudo-Anosov homeomorphism.

5.2 Measured Singular Foliation on the Torus

We will first focus our attention on the simple case of the torus before providing the
general definition of a measured foliation. I will also elaborate on what it means for a
linear map of the torus to stretch the torus along one foliation and shrink along the other.

Let [ be any line passing through the origin in R?. The line [ determines a foliation F} of
R2, which consists of all lines in R? parallel to [. Translations of R? takes lines to lines,
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and so any translation preserves Fj, meaning that leaves are sent to leaves.

//j///% Q/ S
% 4

Since all deck transformations for the standard covering R? — T2 are translations, the
foliation F} descends to a folation Fj of T2

There is an additional structure we will equip the foliations F} with. Let v; : R? — R be
the function that records distance from any point in R? to [. In this picture, the arc from
(a,b) to (c,d) denotes a transverse arc in R?:

cad) /Y,/)/ e L.

&
&

(ﬁ\"l\
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v; will allow us to calculate the difference in height between different points in R? with
respect to the line [.

g )~ Nale, N

%

This in turn will let us define a measure in R2.

The measure p with respect to the foliation is a function that associates each smooth
arcs transverse to foliation F' to a real number.

1 : {Smooth Arcs transverse to foliation £} — R

Integration against the 1-form dv; provides a transverse measure on F}. This means that
any smooth arc « transverse to the leaves of F; can be assigned a length defined by
wu(a) = [, dv;. The quantity u(a) is the total variation of « in the direction perpendicu-
lar to [.

Let’s break down what this means. Let P = {zg,x1,...,x,} denote the partition of the
smooth arc « transverse to foliation F'.
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) C \\ne Q

ot %
e
P
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=
o
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=
=
\V

The measure of a smooth arc a transverse to F' is defined as shown below:

n—1

ple) = supp Y [u(@ier) — vi(wi)],
i=0
where P is the collection of all possible partitions of a.

So, intuitively, we can see that each smooth arc transverse to the foliation is given a real
number which measure the total oscillation from the start point to the end point.
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Now, we shall describe some properties of the measure. Firstly, note that u(«) is invariant
under isotopies of o that move each point o within the leaf of F; in which it is contained.

/ZY] C \'\ne Q

/ N, CCeed) - Cap)

N
A

L “l((\&\- '\)g(“‘\h\

The reason for this is that if a point only shifts within the leave it is contained in, there
is no change in height with respect to the base line I (Note that each leaf in the foliation
is parallel to [). Since p can be intepreted as the integration against the 1-form dv;, this
tells us that the measure is indeed invariant under isotopies of a that move each point «
within the leaf of Fl in which it is contained.

Next, The 1-form dv; is preserved by translations. This is due to similar reasoning above.
As the entire plane is shifted by the translation, at if a point only shifts within the leave
it is contained in, there is no change in height with respect to the base line [. So, since pu
can be interpreted as the integration against the 1-form dv;, the 1-form dv; is preserved.
So, the 1-form dv; descends to a 1-form w; on T? and induces a transverse measure on
the foliation Fj. The structure of a foliation on 7?2 together with a transverse measure is
called a transverse measured foliation on T2
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5.3 Worked out examples of foliation of (? 1)

The characteristic polynomial of A = G i) is:

N —tr(A)X + det(A) = 0.

Since tr(A) =2+ 1=3and A € SL(2,Z) = {(Z Z) :ad — be = 1}, we have:

A2 —3)\+1=0.

Thus, we have the following eigenvalues:

V541

A= ——
2

Vi +1

/\2: 2 .

The corresponding eigenspace of A\; and Ay, denoted as F), and F), respectively, are:

—V5+1
E,\lz{m[ i ]:mERQ}

V541

Ebz{n[i]:nekﬂ

26
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This results in the foliations on T2:

0’0

g

o f:‘{“‘ ‘o:‘"
o\go
“»“

5.4 Measured Singular Foliations on >,

On a higher genus surface, it is not clear what it means for a homeomorphism to stretch
in the direction of a single vector. To counter this, we can construct measured foliation
on a higher genus surface, which we will then map it to R? using smooth charts. This
will allow us to embed the foliations in R?, where we can see how a homeomorphism to
stretch the surface in the direction of that foliation.

A singular foliation F' on a closed surface ¥, ,, is a decomposition of ¥, into a disjoint
union of subsets of ¥, ,,, called the leaves of F', and a finite set of points of X, ,,, called
singular points of F', such that the following 2 conditions hold:

A. For each non-singular point p € ¥, ,,, there is a smooth chart from a neighborhood of
p to R? that takes leaves to horizontal line segments. The transition maps between
any 2 of these charts are smooth maps of the form (z,y) — (f(x,y), g(y)). In other
words, the transition maps take horizontal lines to horizontal lines.

B. For singular points p € ¥, there is a smooth chart from a neighborhood of p to
R? that takes leaves to level sets of a k-pronged saddle, k > 3.
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Just like how we gave foliations on the torus a measure, we want the foliations on higher
genus surfaces to be equipped with the transverse measure too. Which is to say a length
function defined on arcs transverse to the foliation. However, first, we need to define
leaf-preserving isotopies first.

Let F' be a foliation on a surface ¥,,. A smooth arc a in ¥, is transverse to F' if o
misses the singular points of F' and is transverse to each leaf of I’ at each of its interior
point. Let o, 5 : I — £, ,, be smooth arcs transverse to F'. A leaf preserving isotopy from
atoBisamap H:IxI— X , such that:

e HIx {0} =«)and H{Ix {1} =f)
o H(I x {t} is transverse to F for each ¢ € [0, 1].
o H({0} x I and H({1} x I are each contained in a single leaf.

A transverse measure p on a foliation F' is a map that assigns a positive real number to
each smooth arc transverse to F, so that y is invariant under leaf-preserving isotopy and
p is regular with respect to Lebesgue measure. This means that each point of ¥ ,, has a
neighborhood U and a smooth chart U — R? so that the measure u is induced by |dy|
on R2,

Thus, a measured foliation (F,u) on a surface S is a foliation F' of S equipped with a
transverse measure fi.

Punctures and Boundary At a puncture, a foliation takes the form of a regular point
or a k-pronged singularity with & > 3, as in the case of foliations on closed surfaces. At
a puncture, however, we can allow a one prong singularity.

@
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A measured foliation on a compact surface S with nonempty boundary is defined similarly
to the case when S is closed. There are four different pictures in the neighborhood of a
point in the boundary of S depending on whether or not the point is singular and whether
or not the leaves are parallel to the boundary or transverse to the boundary.

Now, that we have defined measured singular foliations, we will need to study on how to
construct these mapping classes for a given surface ¥, ,, so that we can test the relations
by Dr Thang Le.

There are primarily 5 constructions of the pseudo-Anosov functions:
A. Branched Covers

Dehn Twists Constructions

Homological Criterion

Kra’s Construction

= Y a @

A Construction for Braid Groups

We will focus on the construction of pseudo-Anosov by Dehn twists.
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5.5 Construction of pseudo-Anosov via Dehn Twists

In this subsection, we will use the surface s as a reference to understand the con-
struction of pseudo-Anosovs via Dehn twists. The red and blue curves form the set of
multicurves Ty = {ay, a9, a3} and T = {f1, B2}. The set of curves {ay, as, as, 1, P2}
fills 22 0-

We can think of a; U 3; as a 4-valent graph in ¥, , where the vertices are the points of
aNf (represented by the black vertices above in the diagram), as each vertex has degree
4. In fact, by also considering the closures of the components of S — a U [ as 2-cells, we
have a description of S as a 2-complex X. By cutting the surface along the 1-complex
Ty UTg, we can decompose X into 2 2-cell complexes. One of it is shown below as an
example.

% ) M
(\\_ '\'1

M

-

We construct a dual complex X of Y90 using the 2 2-cell complexes . This complex is
formed by taking one vertex for each 2-cell of X, called the co-vertex, one edge transverse
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to each edge of X, called co-edges, and one 2-cell for each vertex of X, called co-cells. If
the 2-cell has a puncture or a marked point in it, then the marked point/puncture will
be the co-vertex. This is also shown above.

In our case, as our 2-cell is an octagon with 8 edges protruding from the co-vertex, we

further decompose our 2 co-cells into 16 rectangles. The case for the co-cell in the above
picture is shown below.

™ '(\1,'

S 7

AN 0\~

We can glue these squares together to form a bunch of rectangles which can be embedded
in R2.
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"2

My Wy

Since the vertices of X are 4-valent, it follows that X' is a square complex, that is each
2-cell of X' is a square. What is more, each square of X has a segment of a running
from one side to the opposite side.

gl

ol

Y3
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We can foliate each square of X by lines parallel to o. This gives rise to a foliation F,
on all of S.

B

g,

oy

Y3

We declare the width of each square to be the same fixed number, and this gives a mea-
sure on [,. The foliation associated to 3 is a measured foliation Fj that is transverse to

F,.
} h
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5.6 Thurston Construction on ¥,

Before we give the general statement of Thurston’s Construction on any surface, let’s
consider the much simpler case of 33 . The essence of the proof of the general statement
is similar and can be abstracted from the case of 3.

Let A and B be multicurves in ¥y such that AU B fills ¥ . T4 and T will denote the
multitwist of A and B respectively. Thurston’s construction tells us that any mapping
class f generated as a composition of T4 and T’z can be classified as periodic, reducible
or pseudo-Anosov based on the representation

p < Ty, Tg > — PSL(Q,R)

1 —,u%
TAH(O 1 )

1
pz o1

An element f €< Ty, Tg > is periodic, reducible or pseudo-Anosov according to whether
p(f) is elliptic, parabolic or hyperbolic.

o

That is to say, by embedding Y in the euclidean plane R? and studying how p(f) acts
on the embedded Y3, we can figure out the classification of f.

Embedding of ¥,, into R?* The first step of constructing the representation in
Thurston’s construction involves embedding Y5 ¢ into R%. While half the work was done
in the previous section decomposing 3 into a flat structure (rectangles), we have yet
to give geometry to these rectangles. That is to say we have to specify the lengths of
hl, ]’LQ, h3, ll and lQZ

j h




5. PSEUDO-ANOSOV MAPPING CLASSES 35

As we will see further down, this boils down to solving a system of linear equations.

Note that as T4 is a Dehn twist on non-intersecting curves aq, as, andag, the action of
T4 on the rectangle is as follows:

g'”s _

10 -
b =

’ ~ -
Pt | - ”

./ax e Tjg

N
N

Note that as T is a Dehn twist on non-intersecting curves ; and fs, the action of Ty
on the rectangle is as follows:

h\
/
/
/
/
/
/
4 7
# h,
/
/
/
; R
|
9 §)/ i\nb
2,
g
42

2 key facts that will give us the system of linear equations to solve are:
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o We want T4 and T to act affinely on the rectangles in R?. This means that we
want parallel lines to remain parallel after the transformation.

o T4 and Tg act affinely if and only if the slopes of the rectangles are constant after
Ty and Ty act affinely on the rectangles.

This results in the following sets of equations:

hy ho hs
A=tan(d) = — = = —
an(8) L L+ 1y ly

LD
 hy+hy  ho+ hs

p = tan(¢)

Using the fact that v = p\, we get the following pair of system of linear equations, one
dealing with variables h; and the other dealing with [;.

The length equations:

— =2l + 1y
v
l
- = ll ‘l‘ 212
v
The height equations:

h

= hi + ho

v

h

=Dt 2 +

h

=2 = hy + hy

v

When the equations above are represented in linear algebra form:
L] (2 1\ [L

v |12 S \1 2/ |1,

1 [hy 1 1 0\ [h

—lho| =1 2 1] |hs

Y ks 01 1) |hs
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Then, we can see that the eigenvectors of the equations above, give us the dimensions
for the sides of the rectangles. After obtaining the lengths and the height we can embed
2270 into RQ.

Constructing the matrix representations of 7y and Tz The p in the representation
in Thurston’s Construction comes from the eigenvalue of the equations above.

Generalising the argument above: While we can reduce the problem in the above
scenario to simple sets of system of linear equation, this might not always be easy. How-
ever, there is an important fact that allows us to skip the process of obtaining the length
and height equations via trigonometry and immediately obtain the matrix form: It can
be shown that the choice for h; and [; can be obtained from the following matrix:

i(ay, f1) i, B2)
N = |i(az, f1) i(a, B2)
i(as, B1) i(as, Ba)

To verify, note that:

1
NN = 2 1|, and
1

O =

=
=
Il
/
N
N =
~__

Thus, for the general case with the multicurves A = {a, o, ..., } and B = {54, Ba, ..., Bn}-
Let N be the matrix with (j, k) entry, we define the matrix N as

Nji = i(ay, Br).
Theorem 5.1. N is primitive.

Proof. Given N, let G be the abstract bipartite graph with m red vertices and n blue
vertices, and NV, edges between the jth vertex and the kth blue vertex. Then, the (j, k)
entry of the dth power (NN')? is equal to the number of paths in G of length 2d between
the jth and kth red vertices in G. Indeed, this is equivalent to the statement that the
graph G is connected. If G is not connected, that would mean that AU B is not connected,

and so the pair A, B does not fill the surface. Thus, N is primitive.
[ |
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Then, we can use the perron-frobenius theorem:

Theorem 5.2 (Perron-Frobenius matrices). Let A be an nzn matriz with integer entries.
If A is a primitive, then A has a unique nonnegative unit eigenvector v. The vector v
is positive and has a positive eigenvalue that is larger in absolute value than all other
etgenvalues.

which tells us we can find the vectors we require.

The general statement of Thurston’s construction is below.

5.7 Thurston’s Construction

Theorem 5.3 (Thurston’s Construction). Suppose A and B are multicurves in S, so that
AUB fills S. There is a real number p = p(A, B) and a representation p :< Tx, Tp >—

PSL(2,R) given by:
1 —Iu% 1 0
Ty — (0 1 ) (anTA}—) (/L; 1)

The representation p has the following properties:

A. An element f €< Ty, Tp > is periodic, reducibleor pseudo-Anosov according to
whether p(f) is elliptic, parabolic or hyperbolic.

B. When p(f) is parabolic, f is a multitwist.

C. When p(f) is hyperbolic, the stretch factor of the pseudo-Anosov mapping class f
is equal to the larger of the 2 eigenvalues of p(f).

5.8 Penner’'s Construction

By utilising Thurston’s Construction, Penner provides us a method to construction
pseudo-Anosov maps.

Theorem 5.4 (Penner’s Construction). Let A = {ay, ag, ...,an} and B = {1, s, ..., Bn}
be multicurves in a surface ¥, that together fill X, ,. Any product of positive powers of
the T, and negative powers of Tp,, where each c; and each [3; appear at least once, is
pseudo-Anosov.
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In the statement above, order does not matter. Penner has conjectured that every pseudo-
Anosov element of the mapping class group has a power that is given by this construction
[Pen88]. This is a difficult conjecture to disprove. The idea of Penner’s proof of the the-
orem above is that one can explicitly find the train track associated to the square of any
such element. The train track is obtained by smoothing out the subset of AU B of S.

5.9 Nielsen-Thurston’s Classification Theorem

2 1
11
pseudo-Anosov. As T? can embedded in R?, we can prove that A is anosov as long as p(A)
is hyperbolic. To do this, however, we require Nielsen-Thurston’s Classification Theorem,
which helps us classify elements in SL(2,Z) into elliptic, parabolic or hyperbolic functions.

Thurston’s Construction has made it very see to show that A = € SL(2,Z) is

In this subsection, we will introduce the Nielsen-Thurston Classification Theorem, which

can be used to prove that (? }) is indeed pseudo-Anosov.

The theorem is as follows:

Theorem 5.5. Nielsen-Thurston Classification Let g,n > 0. FEach mapping class f &
Mod(S,,) is periodic, reducible or pseudo-Anosov. Further, pseudo-Anosov mapping
classes are neither periodic nor reducible.

The proof for the general statement is quite involved. So, I shall focus on ;. There
are 2 approaches which we could use to classify the mapping classes of Mod(X; ;) into
one of the trichotomy: using Hyperbolic geometry or linear algebra. We will adopt the
linear algebra approach as we do not have to build the theory of hyperbolic geometry.
For readers interested in the hyberbolic geometry approach to classification can refer to
[Mar12].

Just using the isomorphism Mod(X; ;) = SL(2,Z), we can give an algebraic approach to

the classification for Mod(X;;). Let A = (CCL Z) € SL(2,Z) and f € Mod(X; ;) denote

the corresponding mapping class. The characteristic polynomial for A is 2 —tr(A)z + 1.
As the determinant of a matrix is equal to the product of it’s eigenvalues and det(A) = 1
as A € SL(2,7Z), it follows that the eigenvalues of A are inverses of each other- call them
)\1 and )\2 = %1
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Note that to find the eigenvalues A\; and A9, we need to solve the following equation:
a— A b
det(( . d—)\>):O'

This leads to the characteristic polynomial:

M\ — (a+d)\+ (ad — be) = 0, which is equivalent to ,
N —tr(A)X + det(A) = 0,
N —tr(AN+1=0.

Making A the subject of the equation results in:

‘o tr(A) + 2157’(14)2 - 4‘

The number of roots to the equation above classifies (2, 7Z) into 3 disjoint partitions. Note
that the number of roots correspond to whether or not the discriminant is more than,
less than, or equal to 0.

Thus, there are 3 cases to consider: Then, there are 3 cases in total:

A tr(A)? —4 >0,
B. tr(A)? —4 =0,
C. tr(A)? —4<0.
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These lead to the case:

A. [te(A)] > 0,
B. |tr(A)| = 0,
C. |tr(A)| < 0.

The 3 cases are equivalent to the cases:
In case A, A has rational eigenvector, and from this it follows that f is reducible. In the
3 case, we see that A has 2 real eigenvalues, and so f is anosov.

In case B, A and % are complex, A = % = +1, and A\ and % are distinct reals.
In case C, it follows from the Cayley-Hamiliton Theorem that A, hence f, has finite order.

I will elaborate on the first case as that is the emphasis in this project. Given, 2 eigen-
values Fy, and F),, we can have 2 linearly independent eigenspaces E, and E),. Thus,
every vector v, v can be written as a linear combination of eigenvectors vy, and v,,, which
span the corresponding eigenspaces E\, and E),. Then, we can see that, the action of A
on R? results in:

A(v) = A(pa(vr,) + pra(v,))

A(pr(vay) + A(pz(v,))
1 A((vay)) + p2A((vy,)
fr1A1(va,)

(UM + l2 Ao (U)\Q ) .

Since we have established that in case A that A\, = )\%, the above equation becomes:

1
paiAL(Un,) + paA2(Va,) = i (vr,) + pay— (V2y)-
1

Thus, we can see that whenever tr(A) > 2, it follows that one of the eigenspaces is
stretched by a factor of A and the other is contracted by a factor of A\. This data, which
gives a bundle of information about f € Mod(T?) and is called the Anosov package,
matches with the story from the earlier sections.

2 1
So,asA:<1 1

), the tr(A) = 3 > 2. Thus, A is pseudo-Anosov.
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5.10 Construction of new pseudo-Anosov functions acting on X ;

So, by Thurston’s construction, Penner’s Construction and the Nielsen-Thurston Classi-
fication theorem, we see that we can build new pseudo-Anosov function g acting on ¥ ;
by taking the composition:

(1 N\ 1o\ 1 1\ 1 0\™ (1 1\ (1 0\™
9= 10 1 11 0 1 1 1) ~lo1 11

such that tr(g) > 2, where n; and m; are integers.
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6 Construction of Finite type Covering Spaces

6.1 Monodromy Groups of Finite Covering

We will now study the monodromy representation, which allows us to encode information
on how generators in m(3; ;) act on the fibres of the base point of ¥;; (the single one
cell z) p~1(x), which allows us to construct finite type covering spaces. Note that this
subsection is based on [Mir95]. So, readers interested can view this book for more details.

We will first explain the general case then talk about ¥, ;. So, we shall use the notation
X and z to denote the base space and it’s fixed point. X and x, will denote the covering
space and its fixed point.

Let F: X — X denote a connected covering space of finite degree d, such that all points
in X have precisely d preimages. F' corresponds to a subgroup H C m1(X,xo) such that
the degree d is the index of the subgroup H.

Consider the fibre F~!(z) over zy. Let the d elements in this fiber be {z71, 73, ..., T4}
Every loop v in X starting at xy can be lifted to d paths 41,73, ..., 74, where 7; is the
unique lift of 7 which starts at ;. In other words, ¥;(0) = z; Vi.

Now, let’s consider the endpoints of ¥;(1); these points also lie over zy, and also form the
entire preimage set F~!(z¢). Thus, each is an z; for some j; we denote 7;(1) by @o().
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We can see that this function o is a permutation of the indices {1, 2, ...d}, and it is only
dependent on the homotopy class of the loop v from the homotopy path lifting theorem
in Algebraic Topology [Hat01]. Therefore, we have the group homomorphism

p:m(X,z9) = Sy
[f] oy

where Sy denotes the symmetric group of all permutations on d indices.

Definition 6.1 (Monodromy Representation of a Covering Space). The monodromy rep-
resentation of a covering map F : X — X of finite degree d is the group homomorphism
p:m(X,z9) = Sy defined above.

Theorem 6.1. Let p : m(X,29) — S _be the monodromy representation of a covering
map F - XX of finite degree d, with X connected. Then, the image of p is a transitive
subgroup of Sy.

Proof. With the notations we used above, fix 2 indices ¢ and j, and consider 2 points
Z; and Z; in the fibre of F' over z,. Since X is connected, a path 7 7 can be found on X
starting at 7; and ending at Z;. Let v = F' o be the image of 7 in X. We can also
see that v is a loop in X based at ¢, since Z; and Z; map to xy, under F'. Then, by

construction, p([7]) is a permutation that sends i to j.
|
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6.2 Construction of Covering Spaces using Monodromy Representa-
tion

In the process above, we are sending a covering space and the covering map to its mon-
odromy representative. We will see in the following subsection that we can also essentially
give an inverse to this mapping: With a monodromy representation, we can build a cov-
ering space and its covering map. Transitivity is an important condition as transiitivity
of the subgroup of S,, ensures the connectedness of our covering graph.

Now, we will construct covers using monodromy representation.

Suppose we have a connected real manifold X with base point zy and a group homomor-
phism p : m(X,z9) — Sg, from the fundamental group of X to a symmetric group Sy,
with a transitive image. Fix an index: in this case: let it be 1. Let H C m1(X, z¢) be the
subgroup consisting of the homotopy classes [y] such that p([y]) fixes the index 1:

H = {[] € m(X,z0) : p([7]) = 1}.

Then, H has index d in (X, ), and it induces a connected covering space F, : X, — X.
This can be verified by basic facts in [Hat01]. Further more, this covering has the prop-
erty that its monodromy representation is exactly the given homomorphism p.

Hence, for a real connected manifold X, we have a 1-1 correspondence between the isomor-
phism classes of connected coverings F' : U — V of degree d and group homomorphims p :
m1(V,q) — Sq with transitive image (up to conjugacy in Sy;). The reason for conjugacy
in Sy is easy to see: this simply reflects a relabelling of the points in the fibre of the
covering over the base point.

In this section, I have shown how to build covering graphs from a given tree based on
monodromy representation. The fundamental group of the covering graph is described
by the set below:

H = {[] € m(X,20) : p([7]) = 1}.

In the next section, we will see that this H is a free group for the base surface ¥, ;. To
aid further calculations, we need to find the generators of H. This will be done by the
theorems from Combinatorial Group Theory. However, before we do that, I will showcase
an example of the monodromy from our software.
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6.3 Worked out example of Monodromy Representation

In this section, I will elaborate on how the algorithms constructs 4-sheeted covers for the
base space X ; step by step. This will showcase how the algorithm works in depth.

Given n = 4, the algorithm generates S4, the permutation group of size 4. The size of
Sy = 24. From the 24 covers, we understand that there are (224) = 276 possible pairing

of permutations that generators a and b can be mapped to.

Let the vertices (1,0,0,0),(0,1,0,0),(0,0,1,0) and (0,0,0,1) be denoted as 1,2, 3 and 4.
So, an edge from (1,0,0,0) to (0,0, 1,0) will be denoted as (1, 3).

We will focus on the following 3 representations and build the corresponding covers.
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The p function of the first cover is as follows:

0 0

o O =
o O O =
_ o O
O = O O

O = OO
_ o O O
o O O
OO = O

We can see that the action of the matrix associated to a and b sends:
e 1+ 2 and 3 respectively,
e 2+ 1 and 4 respectively,
e 3+ 4 and 1 respectively,

e 4+ 3 and 2 respectively.

The resulting cover is:

(48 [0
@ (0,1,0,0) @r 0,0,0)
(7

&

47
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The p function of the second cover is as follows:

0 0

o O =
o O O =
_ o O
O = O O

_ o O O
O = O O
O O = O
o O O

We can see that the action of the matrix associated to a and b sends:
e 1+ 2 and 4 respectively,
e 2+ 1 and 3 respectively,
e 3+ 4 and 2 respectively,

e 4+ 3 and 1 respectively.

The resulting cover is:

0\ cA

@ (0,1,0,0) 0,0,1,0) (0,0,0,)
a

A
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The p function of the third cover is as follows:

0010
. 4 0 01
1000
0100
0001
-br—>0010
0100
1000

We can see that the action of the matrix associated to a and b sends:
e 1+ 3 and 4 respectively,
e 2+ 4 and 3 respectively,
e 3+ 1 and 2 respectively,

e 4+ 2 and 1 respectively.

The resulting cover is:

o (N

(,0,000) @(mo,h@ (0,0,00)

.

[IN

49
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6.4 Finding the Fundamental Group of the Covering Graph

In the above section, we constructed the finite type covering graphs. We now need to find
the generators of the fundamental group of the covering graphs. Finding the generators
is an important step as the set of generators will be used to check if f can be lifted to
their finite covers in the next section. Note that this subsection is based on [Sti93]. So,
readers interested can view this book for more details.

Theorem 6.2. Let X be a connected graph with vertex set X0 Let X be the covering
graph of X and p: X — X be the covering map. Let X0 =p~Y(X%). Then, X is a graph
with vertex set XV,

Proof. First, note that X0 is a closed, discrete subset of X. Let e be an edge in X.
Note that each edge of p~!(e) is mapped homeomorphically onto e as covering spaces
are locally homeomorphic. Also, each component of p~*(e) is open in p~*(e), by the
local connectivity property. Thus, the condition (b) from the definition of graphs hold.
Likewise, it is easy to verify condition (c); if  is homeomorphic to [0, 1], then each edge
of p~*(e) is mapped homeomorphically. If € is homeomorphic to S1, then we apply what
we know about covering spaces of a circle. Finally, condition (d) is a direct consequence
of the following theorem:

Assume (}N/,p) is a regular covering space of Y. If Y has the largest topology which
makes all the maps f) continuous, then Y has the topology that makes all the maps f),
continuous, where {f\,} denote the set of all possible liftings of f).

, because there is a map f; : I — X, corresponding to any edge e;, such that f(I) = &)

and f; maps the open interval (0, 1) homeomorphically onto e;.
|

We need to calculate the fundamental group of the covering graph 7 (X, [EE)) This will be
done based on the Nielsen-Schreier Theorem and the Theory of Schreier Transversals.

Theorem 6.3. The Fundamental group of any connected graph X is a free group.

Proof. The theorem is obvious is X is a tree, because the fundamental group is trivial.
For the case where X is not a tree, we shall prove the following more explicit theorem.

First note that a edge path in a graph has an rather obivous relation to paths in a topolog-
ical space: An edge path (ejes...e,) in the graph X joining vertices vy and v; determines
a unique equivalence class of paths in the topological space X joining the points vy and
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vy, as follows. For each oriented edge e;, choose a map f; : I — & such that f;|(0,1) is a
homeomorphism of (0, 1) onto e; whose inverse belongs to the preferred equivalence class
determined by the orientation of e;. Let a; denote the equivalence class of the path f;.
Then, the product ayas...q,, is uniquely determined by the edge path (ejes...e,).

Let X be a connected graph, let vy be a vertex of X, and let T be the maximal tree in
X containing vg. Let {ey : A € A} denote the set of edges in X not contained in 7.
Choose a definite orientation for each of the edges ey; let ay and by denote the initial and
terminal vertices of ey (It may be the case where ay = by). To each edge e,, we associate
an element «) € m(X,vg) as follows. There is a unique reduced edge path A, in T from
Vg to ay and a unique reduced edge path By in T" from by to vg. Then, «, is the path class
associated with the edge path (Ay, ey, By). if ay = vy, we omit A,; similarly if by = vy
we omit B).

[ |

Now that we have seen that the fundamental group of the covering graph is in fact a free
group, we know that we can express the fundamental group in terms of generators. We
shall now see how the construction of the generators is done.

Theorem 6.4. The fundamental group (X, vy) is a free group on the set of generators
{Oé)\ A€ A}

Proof. First, we prove this theorem for the case where the index set A contains only 1
element; that is to say there is only 1 edge of X not contained in T. We denote this edge
by e;. Because X is not a tree, there exist closed edge paths in X, and it is clear that
any such closed path must involve the edge e;. Give the edge e; a definite orientation.
Then, there must exist reduced closed edge paths in X starting with e;, that is to say
edge paths of the form (ejes...e,,). By choosing the shortest among all such closed edge
paths, we obtain a simple closed edge path, meaning an edge path with no repeated edges
or vertices. Denote this simple closed edge path by (ejes...e;,). Let

C =U"¢.
Then, C' is a subgraph of X homeomorphic to a circle.

Consider the complementary set X — C'; let {Y;} denote the set of components of X — C.
Each Y} is a subgraph of T'; hence, it is a tree. An easy argument shows that Y; has ex-
actly one vertex in common with C. Each of the trees Y; can be contracted to this vertex.
This shows the deformation retract of X; hence, the inclusion map C' — X induces an
isomorphism of fundamental groups. This shows that 7(X) is an infinite cyclic group.
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Choose a point z, € ey for each A\ € A. The set {z) : A € A} is closed and discrete
because X has weak topology. Let U denote the complement of {a, : A € A} in X. Then
. is the deformation retract of U; hence U is contractible. For any index A, let

V)\ =UU {iL‘)\}
Then, U C V), for all A\, and, if A\ # pu,
wnv,=U.

Clearly, V) has T'U e, as a deformation retract; this, the fundamental group m(V),vg) is
infinite cyclic and generated by «.

Then, we can conclude that 7(X,vg) is the free product of the groups m(Vy, vy).
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6.5 Worked out example of Nielsen-Schreier Theorem in the soft-
ware

In the software, this is how we determine the generators of the fundamental group of the
covering graph:

A. Find the spanning Tree of the Covering Graph. For example, the spanning tree of
the first example of the 4-sheeted cover is:

(48 -
O

o

(48

(/9\ (0,1,0,0)

C1,0,00) -(0,0,1,0) (0,0,0,1)

The edges that make up the spanning tree are: [a, b, ab).
B. Identify the edges not in the spanning tree
C. Generate loops using the spanning tree and the edges not in the spanning tree

(a) Choose a definite orientation for each of the edges e,

(b) let ay and by denote the initial and terminal vertices of e, (It may be the case
where ay = b))

(c) There is a unique reduced edge path Ay in T from vy to a) and a unique
reduced edge path B, in T from by to vy

(d) a, is the path class associated with the edge path (Ay, ey, By)
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(0,0,0/)

A. The edges in Red denote the edges of the spanning tree
B. The initial and final vertex of edge 3 are [0,0,0, 1] and [0, 0, 1, 0] respectively.

C. Suppose now we want to build the generator that corresponds to edge 3. There is
a unique path in the spanning tree to [0,0,0, 1] and [0, 0, 1, 0] respectively: ab and
b

D. Thus, the corresponding loop that generates 7(X, [1,0,0,0]) is abab™*.

o We can see that there are a total of 5 edges not contained in the spanning tree

« Each of them correspond to 1 generator of m(X,[1,0,0,0]) is abab™!

« So, for this cover, the generators of 7(X,[1,0,0,0]) are:

A. aa
B. bab~la™!
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C. abab™!
D. abba™!
E. bb

So, we can see that for the first cover, the generators of the fundamental group of the

covering graph are:

For the second cover, we can see that the generators of the fundamental group of the

covering graph are:

For the third cover, we can see that the generators of the fundamental group of the

covering graph are:
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7 Homological Representations and Fox Derivatives

Thus far, we seen how to find the mapping class group of a surface, >,, and construct
pseudo-Anosov maps for the surface. We have also seen how to construct finite type
covers, X1, for 3. Next, for finite type covers constructed, we need to figure out a
way construct the lift of the function. The ideas in this chapter are mostly motivated
and edited from the contents in [Ziel3].

To do this, I employed a slight variation of the Fox Derivatives. Before explaining that,
I will first talk about homological representations.

7.1 Introduction to Homological Representations

The virtual homological spectral radius of a pseudo-Anosov map f is calculated from the
homological representation of the lift of f from the base space ¥, ; to the covering graph,
2171 .

Homological representations are finite dimensional representations of Mod(%,,), which
are associated to finite covers 7 : ¥, — ¥,,. The standard homological representation
is:

Mod(%,,) — GL(H\(Zy.., Q)

given by the induced action on the first homology.

More generally, fix a base point * in ¥,,. So, the mapping class group of X/, is
Mod(%,,, *). This group, Mod(%,,, %), acts on m(X,,,*) by automorphisms. Let K
be a finite index subgroup of m1 (X, *), and let 7 : Zhgjn — Ygn be the associated finite
cover. Let G, = {f € Mod%,,S,) : f(K) = K}. The group Gy is a finite index
subgroup of Mod(X,,,,*). We have the natural map G) — GL(H;(X,,,Q)) Topologi-
cally, every element f € Gy can be lifted to f : X]Ag;L — X)Ag;l. The lift induces a map
fi GL(Hl(EAng,Q)) — GL(Hl(f;l,Q)). The transformation f, is pi(f’). The repre-
sentations pj, are called homological representations [Had20].

Now, that we have the collection of covers which lift to the covering graphs, we can start
constructing the homological representations of the induced homology map of f, f.. The
method of construction is based on the theory of Fox derivations in the group ring of a
free group. There is a geometric background of Fox Calculus with which we intend to
start with.
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7.2 Regular Coverings and Homotopy chains

Let p : X = X be a regular covering of a connected 2-complex, where X is a finite
CW-complex with one 0-cell P. Then, a presentation

B = 7T1(X, P) =< 81, So, ...,Sn|R1,R2, vy Ry >

of the fundamental group of X is attained by assigning a generator s; to each (oriented)
1-cell (which is represented by s; too), and a defining relation to (the boundary of) each
2-cell e; of X. Choose a base point P C X over P, p,(m(X,P)) = N < B, and let
D = B/N represent the group of covering transformations.

Let ¢ : B — D, w + w? be the standard homomorphism.

7T1(X P)
P))’
mHmm@fﬂ

(b : ’]T1<X,P)

Note that (wiwy)? = (w;)?(w2)?. That is to say:

([LAfD) - (X, P)) = (LA] - m (X, P)([fo] - mi(X, P))

The linear extension to the group ring is given by ¢ : ZB — ZD.

7T1(X P) ]
P))

mmemmem

¢ Zim (X, P)] — Z[

Our goal is to present H 1()? , )Afa) as a ZD-module. (We follow the common convention

by writing D-module instead of ZD-module. X0 is the O-skeleton of X .) This means
st (X P)
7r1(X P))

of X to act on the group H; (X X 0) by the operation of scalar multiplication. We will
now see how that can be done.

that we want elements in which represent covering transformations on the cover
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The (oriented) edges s; lift to edges §; with initial point P. By w, we denote both a
closed path in the 1-skeleton X! of X, and the elements it represents in the free group
F = (X', P) =< 51, 89,...,85]— >. There exists a unique lift w of w starting at P.
w is a special element of the relative cycles Z; (5(/ , 3(\6) which are called homotopy 1-chains.

Every 1-chain can be written in the form Z?:l €;5;, where ¢; € ZD. There is a rule

—_~—

w1w2:fuvl+w(f@

To understand it, first lift w, to wi. Its endpoint is w(f . P. The covering transformation

w? maps W, onto a chain w{ - P.

If wy, =377 €¢;85, k=1,2,..., then Wiwy = >0y €;5; with

€; = €15 +w‘fé2j,1 S]S n.

This defines mappings:

(@yi’ :B=m(X,P)—ZD

n
w — €;, with w = Zejsj,
Jj=1

satisfying the rule

There is a linear extension to the group ring ZB:

(5; (1 + )7 = (GG (0)? + (55 (€))?

J J

for n,e € ZB.

From the definition, it follows immediately that

(5 (58))° = b @ = S(52)*(57),
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where 0 is the Kronecker delta.

We may now use this terminology to present H; ()? , ﬁ) as a D-module. The 1-chains
5i,1 <1 < n, are generators and the lifts R; of the boundaries R; = e; of the 2-cells are
defining the relations.

Theorem 7.1. Hl(j(v, )A(B) =< 51, S, ...,EZ\E,RVQ, iy Ry >, 0= R; is a presentation of
Hy(X, X9 as a D-module.

Now, we introduce the Fox Differential Calculus. Here, we will descirbe the purely al-
gebraic approach to the mapping (%)‘f’. Let B be a group and ZB its group ring with
integer coefficients. We will skip the proofs of the theorem in this subsection. Anyone
interested in the proofs can refer to [Ziel3].

7.3 Fox Differential Calculus

This section serves more as a check to manually see by hand if the results we derive is
correct.

Definition 7.1 (Augmentation Homomorphism). There is a homomorphism e : ZB — Z,
T =>n9 — >.n; = 71 We call € the augmentation homomorphism, and its kernal
IB = e 1(0) the augmentation ideal.

Definition 7.2. (Derivations) A mapping A : ZB — Z.B is called a derivation (of ZB)

o Ale+n)=A(e) + A(n) and
- Alei) = Ae)if + eAn)
fore,n e ZB.

Theorem 7.2. The derivations of ZB form a (right) B-module under the operations
defined by

(Al + AQ)(T) = A1<T) + AQ(T), and
(Ay)(r) = A(v)7.

Theorem 7.3. Let A be a derivation. Then:
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e A(m)=0,Ym € Z,

« Alg™h) = —g7'Alg),

« Alg")=(1+g+...+g"A(g),

e Alg™) = (g 4+ g2+ ...+ g ™A(g), forn > 1.

Theorem 7.4. Let F = < s;i € J > be a free group. There exists a uniquely determined
derivation A : ZF — ZF with A(S;) = w; for arbitrary elements w; € ZF.

Definition 7.3 (Partial Derivatives). The derivations

0
0S;

: LF — ZLF,

of the group ring of a free group F =< {s;|i € J}|— > are called partial derivations.

The partial derivations form a basis of the modules of derivations:
Theorem 7.5. « A=Y, %A(Si) for every derivation A : ZF — ZF.
c A=Y 4 ti=007=0Vie
« A(T) =T -7 =Yy %(Si - 1)

. T—Tezzieri(Si—l)Hvi:g—;,iEJ.
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7.4 Application of Fox Calculus to get the Virtual Homological Spec-
tral Radii

The most important takeaway from the subsections above, is that:

w1w2:u71+wf@

This system of storing information of how the homology map acts.

I will show how we construct the homological matrix for the following cover:

(48 o
@ (01 IIOI 0) @( 0/ 010{0
(78

&

o In our software, the contruction is mechanical. Given an edge e € X:

A.

= O O w

we take the path in the spanning tree to e and join them together. Let’s call
this concatenation ~.

Using the covering map p : X — X, we project the path v on X.
Then, f acts on .
We unwarp f() as a path in X starting at the basepoint [1,0,0,0].

The linear combination of resulting edges in X forms the row in our homo-
logical matrix. The rows and columns in our matrix is indexed by the edges
forming our covering graph.

Lastly, we remove the edges and columns of the spanning tree, thus forming
our homological matrix.
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b g, Lo

(0,0,0,)

By Fe
EIZ E\} " .Ei. R ‘0 E_"i L q.. L
N % /-—)\'a . f_.}\(‘: @.ﬂ .. O AN Q@
.« I v r o\L A h "L
l £ e b — ba L ol o P
—3 (Abaaba
* aba . > Ea HiEn;,l 34 s VEL A6y |EBtP 28, 1E2y, 16
SBe 1By, 1B, 1ER - Eyw 1En, 16, 1E03, 0By, "
1Cn, 15, £l
Ex & s |EBs it |Eu
s \ =2 £ v By 2
) [ E‘L ‘}’ LL,MLA ; :
ba \’)Lna\m b b bn Ghn ) abal e o ,;L,J,nl,q
. 16, AEq 5 s - — B 2Ea, 1E5 11;/ % ew)
26y P AEg , 16y, DEg, 150 ¢ Ey B En, %y, 1y, 120, TE3u - 16,316
[
o~ E‘Q“‘ 2&\2,252'“]
2€us 1B

E; 21 We can see that the edge E 2 in the covering graph is mapped down to the generator
a in the base space first. As f acts on a, a is mapped to 1 copy of a, 1 copy of b and 1
copy of a, in order. We shall span this path above in the covering graph starting from
our base point. a maps [1,0,0,0] to [0, 1,0, 0] at first, then b maps [0, 1,0, 0] to [0,0,0, 1]
and lastly a maps [0,0,0,1] to [0,0,1,0]. Thus, we get the respective edges: Ej3, Ea4
and Ey 3. Thus,

Ei19+— Eyio, Esy and Ey3

We carry out this process for each generator of the fundamental group of the covering
space to see where f each edge to.
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11 01 1 101
0 -1 10 -112020
0 0 11 0 101
1 2 01 1 010
1 1 00 1 010

The row of the matrix are indexed accordingly from top to bottom with respect to the
generators of the fundamental group of the covering graph: aa, bab='a™!, abab™!, abba™!,
bb.

The column of the matrix is indexed accordingly from left to right:
[Eha, Bz, B, Eag, B3y, sy, By, By

To get the homological representation, we have to remove the edges in the spanning tree
of the covering graph from the column of the matrix constructed above. This gives us
the homological representation:

_—_= 0 O =
_= N O
OO~ = O
O = = O
e )
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8 Results

In this section, I will elaborate on how the algorithms work and demonstrate step-by-step
for the case of 4-sheeted covers for the base space X ;.

8.1 General Information

In the first step, the algorithm will prompt 2 information: an integer n, and the gener-
ators of the base space. As we are dealing with 4-sheeted covers of ¥; 1, n = 2 and the
generators are a, b.

Given n = 4, the algorithm generates S4, the permutation group of size 4. The size of
S, = 24. Using monodromy representation [6.1], we will notice that there are a total of
276 covers generated. Out of these covers, we sieve through the list to get the covers
which are connected. From the collection of connected covers, we then need to find the
covers for which the pseudo-Anosov function f lifts. We will find that only 3, of the
original 276 covers are connected and pass this lift criterion. I will use these 3 covers to
elaborate on how the software works in detail. This is mainly reiterating the applications
of the theories in the last few sections. However, this section was added to gain a more
complete, bird’s eye overview of the software.
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8.2 First Cover

The p function of the first cover is as follows:

0100
-ar—>1000
0 001
0010
0010
-b»—>0001
1 000
0100

The resulting covering graph is:

(48 i3 .
@ (0, I,O, G) @f o, 0:0{0
(2

o

Then the software determines the generators of the fundamental group of the covering
graph. So, for the first cover, the generators of w(¥; ) are:

A. aa

B. bab~la™!
C. abab™!
D. abba™!
E. bb.

Now, the software will test if the pseudo-Anosov function f will lift for this cover, simply
applying the standard lifting criterion theorem in Algebraic Topology [Hat01].
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Thus, we can see that we need to check that f,p.(m1(31.1) C pu(m1(S1.1)). Thus, we have
the following:

A fips
B. fip«(bab~ta™') = f.(bab~la™!) = abababaa= b 1a!

a) = f.(aa) = ababaabaa'b!

(a
(

C. f.p.(abab™?) = f.(abab~") = abaaba

D. fp.(abba™") = f.(abba™") = baabaa~ b~ a~ b a!
(

E. f.p.(bb) = f.(bb) = baba.

However, it suffices to check that the words on the RHS maps back to the base point
[1,0,0,0] as by the monodromy representation (3 ;) is homomorphic to the subgroup
H = {0 € Sy:0(l) = 1}. To see how it works, let’s focus on words E from the list
above.

(01110/0) 0,1 »(0,0,0,0

As the word in F is baba, the path starts at vertex [1,0,0,0], takes the edge b to vertex
[0,0,1,0], then the edge a to vertex [0, 0,0, 1], edge b to vertex [0, 1,0, 0] and finally vertex
a back to the initial vertex [1,0,0,0]. So, we can see that path baba is a loop around
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[1,0,0,0]. We can see that this checks out for every element in the list above.

Now, we build the homological matrix for the lift. Using what we have learnt earlier, we
can see that, the homological matrix can be constructed to obtain:

11 01 1 101 1 1 01 1
0 -1 10 -112060 0 -1 10 -1
o 0 11 0 101}]—=10 0 11 O
1 2 01 1 010 1 2 01 1
11 00 1 010 1 1 00 1

The row of the matrix are indexed accordingly from top to bottom with respect to the
generators of the fundamental group of the covering graph: aa, bab=ta™!, abab™!, abba™!,

bb.

The column of the matrix is indexed accordingly from left to right:
(B2, Bz, Ear, Eaa, B3y, Ea, B, Eug).

From the matrix, we see that the eigenvalues are the following: 2.61, —0.5 4+ 0.866¢ and
0.382. Thus, the spectral radius for this cover is: 2.61.

Applying the same idea on the other 2 4-sheeted covers of ¥; 1, we can find the respective
virtual homological spectral radius associated to each cover.
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8.3 Second 4-sheeted Cover

The p function of the first cover is as follows:

0100
-ar—>1000
0 001
0010
0001
-b|—>0010
0100
1000

This results in the following cover:

a cA

@ (0,1,0,0) 0,0,1,0) (0,0,0,))
[

7N

Then the software determines the generators of the fundamental group of the covering
graph. So, for the first cover, the generators of 7(¥; ) are:

Now, the software will test if the pseudo-Anosov function f will lift for this cover, simply
applying the standard lifting criterion theorem in Algebraic Topology [Hat01]. Thus,
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we can see that we need to check that f,p,(m1(S1.1) C pu(m1(311)). Thus, we have the
following;:

1)abaaba
2)ababaabaa b~
3)abababaa b ta !
4)baabaa b o b et
)

5)baba.

As mentioned in the earlier subsection, it suffices to check that the words on the RHS
maps back to the base point [1,0,0,0] as by the monodromy representation 7(¥;,) is
homomorphic to the subgroup H = {o € Sy : (1) = 1}.

The homological matrix of the lift, including the spanning tree edges, is:

11 1 1 0101
11 1 2 0010
10 1 1 0010
00 -1 -11100
01 0 0 1101
The homological matrix of the lift is:
11 1 1 0
11 1 2 0
10 1 1 0
00 -1 -1 1
01 0 0 1

The row of the matrix are indexed accordingly from top to bottom with respect to the

generators of the fundamental group of the covering graph: aa, abab™t, abba™!, bab=ta™1,
bb.

The column of the matrix is indexed accordingly from left to right:
[E127 E147 E217 E237 E347 E317 E437 E41]-

From the matrix, we see that the eigenvalues are the following: 2.61, —0.5 4+ 0.866¢ and
0.382. Thus, the spectral radius for this cover is: 2.61.
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8.4 Cover 3

The p function of the first cover is as follows:

0010

s 0001

1100 0

0100

0001

b 0010

0100

1000

The resulting cover is:

o (N

[,0,0,0) 0,1,0,0) 2(0,0,1,0) (0,00

Yot

[IN
N

Then the software determines the generators of the fundamental group of the covering
graph. So, for the first cover, the generators of w(¥; ) are:

Now, the software will test if the pseudo-Anosov function f will lift for this cover, simply
applying the standard lifting criterion theorem in Algebraic Topology [Hat01]. Thus,
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we can see that we need to check that f,p,(m1(S1.1) C pu(m1(311)). Thus, we have the
following;:

1)ababaabaa™"b™"
2)abababaa b ta ™t
3)abaaba
4)baabaa b a0 et
)

5)baba.

As mentioned in the earlier subsection, it suffices to check that the words on the RHS
maps back to the base point [1,0,0,0] as by the monodromy representation 7(¥;,) is
homomorphic to the subgroup H = {o € Sy : (1) = 1}.

The homological matrix of the lift, including the spanning tree edges, is:

111 2 0010
0 1.1 1 0010
11 1 1 0101
0O -1 0 —-11100
1 0 0 0 1101
The homological matrix of the lift is:

11 1 2 0

0 1. 1 1 0

11 1 1 0

0 -1 0 -1 1

1 0 0 0 1

The row of the matrix are indexed accordingly from top to bottom with respect to the

generators of the fundamental group of the covering graph: abab™!, abba™!, aa, bab=ta™1,

bb.

The column of the matrix is indexed accordingly from left to right:
[E137 E147 E247 E237 E317 E327 E427 E41]-

From the matrix, we see that the eigenvalues are the following: 2.61, —0.5 4+ 0.866¢ and
0.382. Thus, the spectral radius for this cover is: 2.61.
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8.5 Graph Results

In the last few sections, we have showed how the software operates to get the virtual
homological spectral radius for each cover. Given the input n to determine the number
of sheets of the cover, the program will give a graph which contains the values of the
virtual spectral homological radius from each n-sheeted cover for which the radius exist.
I will now show how the graph output is like for various n-sheeted covers.

4-sheeted covers of Y ;, Pseudo-Anosov function G 1)

The total number of valid 4-sheeted covers is 3 out of a total 276. The remaining covers
are not included as either: (i) the covers are not connected or (ii) the pseudo-anosov
function does not lift to the cover. The spectral radii of the 4-sheeted covers are as
follows:

1e—-12+2.6180339887

Ul
N
L

Ul
i

IS
©

S
3
L

Spectral Radius from Each Finite Type Cover
3
[ ]
[ ]
[ ]

T T T T T T T T T
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Finite Covers

N 2 At A =N

Note that the values on the y-axis are read as n x 10'2 4+ 2.618, where n is the label on
the left.
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5-sheeted covers of ¥, ;, Pseudo-Anosov function G 1)

As mentioned above, the total number of valid 5-sheeted covers is 12 out of the total 7140
covers. This graph shows the following output:

1e—12+2.6180339887

'S [S) ul ul
o o =] N
L L L

Spectral Radius from Each Finite Type Cover

B
oo
L

2 4 6 8 10 12
Finite Covers

Note that the values on the y-axis are read as n x 10'%2 4 2.618, where n is the label on
the left.

6-sheeted covers of %, ;, Pseudo-Anosov function G 1)

As mentioned above, the total number of valid 6-sheeted covers is 250 out of the total
258840 covers. This graph shows the following output:

.L:.y,,cwvc.
NN NN
(=)} (=) (o)) (=)} [=)]
w (<)} ~ © ©o

N

()]

b S
|

SpTLLal NAUIUS Ul Eact i
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o
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4-sheeted covers of X; ;, Pseudo-Anosov function <_21 _11>
The total number of valid 4-sheeted covers is 3 out of a total 276:

1e—12+2.6180339887

IS u % u
© ) = N
L L L L

Spectral Radius from Each Finite Type Cover
B
©

T T T T T T T T T
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Finite Covers

Note that the values on the y-axis are read as n x 10'%2 4 2.618, where n is the label on
the left.

5-sheeted covers of X;;, Pseudo-Anosov function <_21 _11>

As mentioned above, the total number of valid 5-sheeted covers is 12 out of the total 7140
covers. This graph shows the following output:

1e—-12+2.6180339887

N vl ul v
© o = N
L L L

Spectral Radius from Each Finite Type Cover

S
o]
L

2 4 6 8 10 12
Finite Covers

Note that the values on the y-axis are read as n x 10'%2 4 2.618, where n is the label on
the left.
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6-sheeted covers of X;;, Pseudo-Anosov function <_21 _11>

As mentioned above, the total number of valid 6-sheeted covers is slightly less than 250
out of the total 258840 covers. This graph shows the following output:

1e—12+2.6180339887

S Ul u O]
© o = N
L L L

Spectral Radius from Each Finite Type Cover

B
)

0 50 100 150 200 250
Finite Covers

Note that the values on the y-axis are read as n x 10'2 4 2.618, where n is the label on
the left.
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8.6 Interpreting the results
Dr Thang Le’s conjecture states that:

VOl(Mf)

Modifying Thang Le’s general conjecture to our class of space, he proposes that:

My
log(Dy(f)) > 3]

~2.02988
371
~2.02988
3

= 0.21537695725.

Thus, we are required to show the following:

Dh(f) > 60.21537695725

= 1.24032936.

This can clearly be seen for the cases we have tested. Thus, we can see that the conjecture
holds thus far, as w no counterexample has been found.



9. LOGIC CHECKS 7

9 Logic Checks

9.1 Swiss Cheese Model of Checks

The software has inbuilt checks in different stages of the program to ensure that we do
not have ridiculous outputs. Generally speaking, these are the stages in the software:

User Prompts: Integer n and the generators of
the fundamental group of the base graph

Constructing all the possible n-sheeted
covering graphs
Sieve through to get the connected

covers

v
Find the fundamental groups of each covering
graph
Sieve through the connected covers to
Get the Homological Matrix of the Lift of
Pseudo-Anosov Map

get the ones for which the covers lift
Output: Get the required data in array and
graph form to verify the conjectures

The checks include the following:

Checks involving Cardinality of Arrays Throughout the process, the software builds
arrays to store information required whenever necessary. Key examples include arrays
containing the pairs of permutation matrices to construct the covers, arrays containing
the edges of the spanning tree of the cover, and arrays containing the fundamental group
of each cover. In each of these cases, we can mathematically prove what the array size is
supposed to be based on our inputs: the integer n, and the generators of the fundamental
group of the base space.

In the first given example, we know that we need to construct a total of (’;‘) covers, in-
cluding covers which are not connected and covers for which the pseudo-Anosov function
does not lift. When the software ends, it prints out the total number of covers it has
considered at the start of the program. In the case of the 4, 4 and 6 sheeted covers, the
software ensures that all 276, 7140 and 258840 covers are considered. By checking that
the total number of covers we have constructed is equal to (7;') covers, we ensure that no
possible cover is missed.



9. LOGIC CHECKS 78

In the second given example, the software stores the edges in the spanning tree in an ar-
ray. We know that for any given spanning tree , the number of edges in the spanning tree
is equal to the number of vertices in the spanning tree minus 1. Thus, in the software,
as we know thus the number of vertices in the spanning tree is n, given by the input
integer n, the program verifies that in the number of edges in the spanning tree is equal
to n — 1 for the spanning tree we find in each cover that we construct. This ensures that
the correct spanning tree is built.

In the last example stated above: The generators of the fundamental group of each cov-
ering graph is also stored in the form of arrays in the software. As we learnt from the
theorem constructing the generators of the covering graph, we know that the number of
generators in the covering graph is equal to the total number of edges in the covering
graph minus the number of edges in the spanning tree. The software is able to calculate
the number of edges in the covering graph based on the user inputs: The construction
by Monodromy Representation tells us that the number of edges in the covering graph is
the number of vertices in the covering graph, n, multiplied by the number of generators
of the fundamental group of the base space that the user inputs. So, in our case, as the
base space is ¥; 1, the number of generators is 2. Thus, the total number of edges in
the covering graph is 2n. The software has already calculated the number of edges in
the spanning tree. Then, the software ensures that the size of the array containing the
generators of the fundamental group of the covering graph is equal to the total number
of edges in the covering graph minus number of edges in the spanning tree. So, in cases
listed in the results, the software checks that the array containing the generators of the
fundamental group of the covering graph is 2n — (n — 1) = n 4+ 1. This ensures that no
generator is missed or we incorrectly add an extra generator.

Well-known Bounds There exist well known and studied bounds of the virtual ho-
mological spectral radius of pseduo-Anosov functions. As stated in the abstract, it is
evident that any virtual homological spectral radius for f is greater than or equal to
1. It is shown by C.T. McMullen that any virtual homological spectral radius for a
pseudo-Anosov surface automorphism f is strictly lesser than the dilation if the invariant
foliations for f have prong singularities of odd order [McM13]. The software verifies this is
true for each cover we construct, thus ensuring we do not have any anomalies in our data.

Each of this checks built into different stages of the software act as a barrier to ensure
the integrity of our results. However, we can always add in additional layers and tighter
bounds decrease the room of error. Due to the tight timeline in this project, these are
the checks added in. This will be addressed in the scope of improvement section of the
conclusion.
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10 Conclusion and Future Scope of Improvement

While there are positive signs that the conjecture by Dr Thang Le holds, we thus far have
only considered a specific class of surface and functions: 6-sheeted covers of the surface

2 1 o PO
11 Thus, the future direction primarily lies in
expanding the cases of spaces and functions we can work on. More work can also be done
to increase the speed and improve the memory management of the program, so that it

becomes more efficient.

Y11 and pseudo-Anosov function

More surfaces we can work on: In this project, we specifically worked on the once
punctured torus X; ;. We can generalise this systematically.

First, we can focus on the case of the surfaces whose fundamental group is the free group.
One such case is the bouquet of n circles, B,,. The reasons for focusing on this class of
surfaces is simply because we can focus on generalising the construction of the cover of the
base graph with n generators instead of just 2 without being hindered by the complexity
of relations in the fundamental group.

Then, once we have coded the the construction of the cover of the base graph with n
generators instead of just 2, we can then expand on this by introducing relations. At
this stage, we need to remind ourselves that the base surface is no longer just a 1 cell
complex. So, we need to figure out how to lift relations from the base surface to the
covering surface and we also need to consider what are the impacts of relations of the
base surface in the covering surface. We need to also introduce a new method to find the
fundamental group of the covering surface as the method introduced in this thesis is only
applicable for graphs and thus no longer relevant.

At the end of these 2 stages, we should be able to cover a large class of surfaces.

Generalising functions tested: To expand on the class of functions we need to test
on, we need to be wary that eventually we require the hyperbolic volume of the mapping
torus of the function. Thus, we should focus on functions whose mapping torus is well-
known for easier testing.

At the sametime, we can include the feature to calculate the hyperbolic volume of the
mapping torus of the function using the theory from [Pur20].

Improving Proof of Correctness: While there are multiple layers of checks added
into the program, there can always be more checks added to increase the integrity of
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the results and the minimize the degree of error. One of the suggestions include adding
tighter bounds that have been proven to be true into the program as an additional layer
of security.

Increasing Speed: When tested in the author’s computer, after n = 6, the software
runs considerably slowly. To combat this, there are primarily 2 things that can be done.

Firstly, there is no structure added to the program so far. We can toy with adding
Object-Oriented Programming or Functional Programming techniques to provide more
structure, thus reducing redundancy in the code and improving speed. The latter can
also increase the correctness of the program due to its type checking capabilities.

Secondly, the core algorithms and data structure can be improved, There are plenty of
if and for loops in the code, which drastically increases the runtime of the algorithm.
Moreover, only basic data structures, lists, arrays and dictionaries were used. This might
have slowed down the software and options can be explored to see how and if we can
change these things.

Another suggestion is to use techniques of high performance computing [Lan17]/ parallel
programming in python [Pall4] to increase the speed of the program.

Memory Management: One of the key stages that takes up the memory of the pro-
gram is the building of the permutation matrices to construct the covering graphs. As
n increase from 3 to 6, the number of covers increase drasticallly: 15,276, 7140, 258840.
Thus, for large n, we will face memory management issues. So, we should find ways to
overcome this issue.
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11. APPENDIX

11 Appendix

Here, I will show an example of the data output in my computer for the case ¥ 1, (

21
11

83

)
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11.

What do you want the size of n in S_n to be

What do you want the of generators for free group to be

The Psuedo-Anosov function is (In Penner Construction For ,

[*a', 'b'],

Row Number rho Covering Graph Edges

array([[0., 1., 0., 0.],
[1., o.
[o.
[o.

0
il
0.
[o. 1.
0.
0.

’
’

1), 'b': array([[0., 6., 1., 0.1,

]

o7

0

1

1

1

1
[1. 1

[o., 1

156 {'a': array( 1., 0
[1. 1

[o. o
1

1

1

1

1

1

1

1

1

)}

’
’

0.1,
1.1,
[6. 0.11), 'b': array([[0., 6., 0., 1.1,
[o. 0.1,
0.1,
0.1}
., 0.1, '

[o.
KR
{'a': array( ., 0.,
[o.

0., 1.1,
[1. 0., 8.1,
[e. 0., 0.11), 'b': array([[6., 0., 0., 1.],
[o. 1., 0.
[o. 8., 8.1,
[1., 6., 0., 6.1}

Total number of covering spaces is: 277

’

), @&, W),

1.g': ﬁ_um_. "-p', _|m_u. 1.p' ﬁ_uc_\ _|m_uw
Spanning Tree Edges

(4, 3), (4, 221 [(1, 2), (1, 3), (2, 4)]

6.1, 1, G, 4, G, 2), (4 3), (4, D] [@, 2), @, 4, (

(4, 2), (4, D1 [(, 3), 1, 4, (3, 2)]

The set consisting of spectral eigenvalues, one from each finite cover: [2.6180339887498936, 2.618033988749895, 2.6180339887498922]

D_h(f) is: 2.618033988749895
The Llogarithm of D_h(f) is: 0.9624236501192069
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11.

Number of Edges in Covering Graph but not Spanning Tree

List of paths in spanning tree fr

[f1, 21, [1, 31, [1, 2, 4]]

([1, 21, [2, 2, 3], [1, 4]]

[f1, 3, 21, [1, 31, [1, 4]]

base point 1

Spanning Tree Paths as Words

[[*a'l, ['b'], ['a', 'b']]

ety ety (et MR
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11.

Benerators_for_Fundamental_Group_of_Covering_Graph

OV e, U R et [

atly

['b

’

'-b

’

=@l

['b',

ool

'b']1

Test to see if all edges not in spanning tree is accounted for

NES

jMES
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11.

Where does the pseudo-anosov map send the generators of the fundamental group of the cover

g space to?
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11.

'b']]

QERSIR

Can the function be lifted?

This passes the test

This passes the test

Homological Matrix

Homological Matrix without spanning tree edges

il
=ilg
0.

1.
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11.

eigenvalues

[ 2.61803399+0.

il

+0.j

[ 2.61803399+0.j

1

+0.3

[ 2.61803399+0.7

1,

+0.3

+0.86602543 -0.5
0.38196601+0.5 1

-0.5 +0.8660254j -0.5
0.38196601+0.7 1

-0.5 +0.86602543 -0.5
0.38196601+0.5 1

-0.86602547

-0.8660254j

-0.86602547

Absolute Value of Eigenvalues

[2.6180339887498936, 1.0000000000000004, 1.0000000000000004, 0.9999999999999997, 0.3819660112501052]

[2.618033988749895, 0.9999999999999999, 0.9999999999999999, 1.0000000000000002, 0.3819660112501051]

[2.6180339887498922, 1.000000000PEAREL, 1.00000P0AEEEEE01, 1.0, 0.38196601125010515]




