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1 Introduction

In this article, I will be introducing Thurston’s Construction. We know that Nielsen-
Thurston Classification tells us that given a surface ¥, ,, with g,n > 0, every mapping
class f € Mod(X,,,) is periodic, reducible or pseudo-Anosov. Then, the question arises:
given an arbitary mapping class f, what classification does it fall under? Thurston’s
construction addresses this question. Briefly put, Thurston’s Construction tells us that
we can classify a mapping class based on the action of the multitwists that generate the
mapping class group (which we will define later) on the equivalence classes of the frame
fields of the Singular Euclidean Structure of ¥, ,,.

Before giving the formal statement, let’s look at a few relevant definitions. Let S = X ,,.
We say that a collection of isotopy classes of simple closed curves in S fills S if any sim-
ple closed curve in S has positive geometric intersection with some isotopy class in the
collection. If A = {ay, s, ..., } is a multicurve in a surface S (that is a set of pairwise
disjoint simple closed curves), we denote the product IT1?,T,, by T4. Such a mapping
class is often called a multitwist.

The formal statement of the theorem is as follows:

Theorem 1.1 (Thurston’s Construction). Suppose A and B are multicurves in S, so that
AUB fills S. There is a real number p = pu(A, B) and a representation p :< Tx, Tp >—

PSL(2,R) given by:
1 —M% 1 0

The representation p has the following properties:

A. An element f €< Ty, Tp > is periodic, reducible or pseudo-Anosov according to
whether p(f) is elliptic, parabolic or hyperbolic.

B. When p(f) is parabolic, f is a multitwist.

C. When p(f) is hyperbolic, the stretch factor of the pseudo-Anosov mapping class f
is equal to the larger of the 2 eigenvalues of p(f).

Proof. The general idea for proving the theorem is to find a singular Fuclidean Structure
on S with respect to which any function ¢ €< T4, T > acts by affine transformation.
The function ¢ €< Ty, Tp > needs to act by affine transformation in order to respect
the foliation-preserving property that the surface itself possesses (leaves in a foliation are
sent to leaves). Here, an affine transformation is one that, in local charts away from
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singularities, is of the form Mz + b, where M is a linear transformation and b is a vector.
In Thurston’s Work on Surfaces, Thurston introduces an equivalent definition of affine
transformation: A homeomorphism ¢ is said to be affine if it leaves invariant the set of
co-vertices (which is defined later) and if the image of a straight line of the flat structure
is a straight line.

We will then add an additional feature that comes equipped with an orthonormal frame
field, well defined up to sign. A local frame field for a manifold M (defined onp € U C M)
is a collection (X7,...,X,,) of smooth vectors fields that are defined on an open neigh-
borhood U C M such that for each ¢ € U, the collection (Xi(q),...,X,(¢)) is a basis
of T,(M) and Vi, X;(q) is orthogonal and have length 1. In our case, as the singular
euclidean structure is embedded in R?, the local frame field only consists of 2 smooth
vector fields X, X5. Then, any given affine map on S, its derivative can be described by
a 2 x 2 matrix well defined up to sign: The representation p will assign to each affine
map in < Ty, Tp > its differential, p(h) = Dh.

So, the proof of this construction breaks down into the following steps:
o Decompose S into its Singular Euclidean Structure.

e Once the singular Euclidean structure on which T4 and Ty act affinely has been
established, after orienting multicurves A and B, we will give the structure an or-
thogonal frame field well defined up to multiplication by £1: We choose a positively
orientated basis so that the first vector is parallel to A and the second vector is
parallel to B.

« By construction, in this singular Euclidean Structure, the multitwists T4y and Tz
can be chosen to be affine. These affine transformations, T4 and T, fix the 1-cells
of C parallel to A and B, respectively. The action of Ty and T on equivalence
classes of frame fields are then given exactly by the matrices in the statement of
the theorem.

o We now finish the proof by showing the representation satisfies the properties stated
in the theorem.

I will now explicitly break down each step.
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e Decompose S into its measured foliation as stated in the above section.

We will decompse S into a flat metric as follows. As the process is quite involved, we will
use the surface X3 9. The red and blue curves form the set of multicurves Ty = {a, ag, a3}
and Tp = {f1, f2}. The set of curves {ay, as, as, B, Sz} fills Xop.

Our endgoal: Since our example of 3, does not contain any singular point, we are sim-
ply trying to construct a flat representation (embedding) of the surface on R? such that
parallel lines remain parallel under the action of Ty and Tg (as T4 and T are supposed
to be leaf-preserving).

We can think of o; U 3; as a 4-valent graph (that is to say, the number of edges that are
incident to the vertex is 4) in s o, where the vertices are the points of a N (represented
by the black vertices above in the diagram). In fact, by also considering the closures of
the components of S — a U as 2-cells, we have a description of S as a 2-complex X.
By cutting the surface along the 1-complex 7y U T, we can decompose ¥ into 2 2-cell
complexes.
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We construct a dual complex X of Yo using the 2 2-cell complexes . This complex is
formed by taking one vertex for each 2-cell of X, called the co-vertex, one edge transverse
to each edge of X, called co-edges, and one 2-cell for each vertex of X, called co-cells. If
the 2-cell has a puncture or a marked point in it, then the marked point/puncture will
be the co-vertex. This is also shown above.

In our case, as our 2-cell is an octagon with 8 edges protruding from the co-vertex, we
further decompose our 2 co-cells into 16 rectangles. The case for the co-cell in the above
picture is shown below.
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We can glue these squares together to form a bunch of rectangles which can be embedded

in R2.
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Since the vertices of X are 4-valent, it follows that X' is a square complex, that is each
2-cell of X' is a square. What is more, each square of X has a segment of a running

from one side to the opposite side.
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We can foliate each square of X' by lines parallel to o. This gives rise to a foliation F,
on all of S.
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In order to embed the rectangles into R?, we need to provide the rectangels a geometry.
e, we need to declare the width of each square to be the same fixed number, and this
gives a measure on F,,. The foliation associated to 3 is a measured foliation Fj that is
transverse to F,.



1. INTRODUCTION 8

" E\nz
5

9.

Embedding of ¥, into R?: The first step of constructing the representation in
Thurston’s construction involves embedding Y5 ¢ into R?%. While half the work was done
in the previous section decomposing 3 into a flat structure (rectangles), we have yet
to give geometry to these rectangles. That is to say we have to specify the lengths of
hi, ha, hs,ly and [y:

j h

L i\"g

h/-Q/\/

As we will see further down, this boils down to solving a system of linear equations.

Note that as T}y is a Dehn twist on non-intersecting curves aq, o, and ag, the action of
T4 on the rectangle is as follows:
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Note that as T is a Dehn twist on non-intersecting curves 8; and fs, the action of Ty
on the rectangle is as follows:
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2 key facts that will give us the system of linear equations to solve are:

o We want T4 and T to act affinely on the rectangles in R?. This means that we
want parallel lines to remain parallel after the transformation.

e So, Ty and T act affinely if and only if the slopes of the rectangles are constant
after Ty and T act affinely on the rectangles.
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This results in the following sets of equations:

hi  hy  hs
an(0) L L+l I
I Iy

" hithy  hy+ hs

p = tan(¢)

Using the fact that v = p), we get the following pair of system of linear equations, one
dealing with variables h; and the other dealing with [;.

The length equations:

-— = 2l1 + lQ
v
[
2 =1 42
v
The height equations:

h

= hy+hy

v

ho

?:h1+2h2+h3

h
= = hy + hy
v

When the equations above are represented in linear algebra form:

e |
NNI
N
|
|
/N
_ N
DN =
—_ N =~

Then, we can see that the eigenvectors of the equations above, give us the dimensions
for the sides of the rectangles. In order for Thurston’s Construction to work, we will be
require a specfici choice among the possibilies, which I will elaborate on further. After
obtaining the lengths and the height we can embed Y into R2.
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1.1 Generalising the Embedding of Co-cells into R?

While we can reduce the problem in the above scenario to simple sets of system of linear
equation, this might not always be easy. However, there is an important fact that allows
us to skip the process of obtaining the length and height equations via trigonometry and
immediately obtain the matrix form: It can be shown that the choice for h; and [; can
be obtained from the following matrix:

i(ar, Br) ian, Ba)
N = |i(ag, 1) i(ag, B2)
i(as, 1) i(as, Ba)

—~

To verify, note that:

110
NN'=1]1 2 1|, and
011
i (201
]VN-(12

Thus, for the general case with the multicurves A = {a, o, ..., o, } and B = {54, Ba, ..., Bn}-
Let N be the matrix with (j, k) entry, we define the matrix N as

Nj,k = ’i(&j,ﬁk).
Theorem 1.2. N is primitive.

Proof. A non-negative matrix is primitive if it has a power that is a positive matrix. A
matrix is said to be positive (non-negative) if each of its entries is positive (non-negative).

Given N, let G be the abstract bipartite graph with m red vertices and n blue vertices,
and N, ; edges between the jth vertex and the kth blue vertex. Then, the (j, k) entry of
the dth power (NN')? is equal to the number of paths in G of length 2d between the jth
and kth red vertices in GG. Indeed, this is equivalent to the statement that the graph G
is connected. If G is not connected, that would mean that A U B is not connected, and

so the pair A, B does not fill the surface. Thus, N is primitive.
|

Then, we can use the perron-frobenius theorem:
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Theorem 1.3 (Perron-Frobenius matrices). Let A be ann xn matriz with integer entries.
If A is a primitive, then A has a unique nonnegative unit eigenvector v. The vector v
is positive and has a positive eigenvalue that is larger in absolute value than all other
etgenvalues.

which tells us we can find the vectors we require. The vectors give us the possible sets of
the width and length for the rectangles, for which T4 and Tg act affinely, so that we can
embed them into the real plane.

Going back to the point in the previous section, among the possible widths and lengths
we can choose from, we will choose the values such that:

Once we have assigned the lengths and widths to the rectangles, we can embed the
structure into R2.

e Once the singular Euclidean structure on which 74 and Tz act affinely has been
established, after orienting multicurves A and B, we will give the structure an or-
thogonal frame field well defined up to multiplication by +1: We choose a positively
orientated basis so that the first vector is parallel to A and the second vector is
parallel to B.

To see the ambiguity of £1, we can consider the following situation.
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(2)

We can see breaking the curves into the cocells, the orthonormal frame fields might differ
in orientation by 180 degrees, even though the foliations are derived from the same curve.
Thus, we need to +1.

» By construction, in this singular Euclidean Structure, the multitwists 74 and Tz
can be chosen to be affine. These affine transformations, T4 and Tz, fix the 1-cells
of C parallel to A and B, respectively. The action of T4 and T on equivalence
classes of frame fields are then given exactly by the matrices in the statement of
the theorem.

o We now finish the proof by showing the representation satisfies the properties stated
in the theorem.

If p(f) is elliptic, then p(f) has a power such that add more details here. So, f has a
power that fixes the orthogonal frame field of S (up to sign) at every point. Also, by
construction, f fixes each singular point of the metric. Thus, f has a power that acts as
the identity in the neighborhood of some singular point. Since f is affine, it follows that
f is periodic.

If p(f) is parabolic, then it has a 1-dimensional eigenspace, and the eigenvalue for this
space must be 1. The eigenspace induces a singular foliation on S. Up to replacing f
with a power, we may assume that (the affine representative of) f fixes each singularity
of the foliation and preserves each leaf emanating from each singularity. Let L be one
such leaf. Since the eigenvalue is 1, it follows that f fixes L pointwise. If the leaf L had
an acccumulation point, then it would follow that f fixes a neighborhood of this accu-
mulation point, and so (a power of) f would be the identity. Thus, we may assume that
the collection of all leaves starting from singular points is a collection of closed curves
in S. As these closed curves are geodesics in the singular Fuclidean metric, they are all
simple and homotopically non-trivial. Since f fixes this collection, it follows that f is
reducible. What is more, if we cut S along the reducing curves, we obtain a foliation that
does not have any singularities. By the Euler-Poincare formula, the cut surface must be
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a collection of annuli. In particular, f is a multitwist about reducing curves.

Finally, if p(f) is hyperbolic, then the eigenspaces of p(f) define 2 transverse measured
foliations, f multiplies the measure of one foliation by the larger eigenvalue of p(f), and
f multiplies the measure of the other foliation by the smaller eigenvalue of p(f) (the
foliations have singularities at the singular points of the Euclidean structure). Thus, f is

pseudo-Anosov, and its stretch factor is given by the larger eigenvalues of p(f).
|
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