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Introduction

Inverse scattering problem: Determine the scattering object from
boundary measurements of scattered wave (for several incident waves).

Applications: Radar, non-destructive testing, geophysical exploration,
medical imaging, ...
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Inverse scattering problem

Let η : R2 → R be bounded function satisfying η = 0 in R2 \ D. Let
Ω be large disk such that D ⊂ Ω. Consider incident waves

uin(x , d) = e ikd ·x

where d ∈ S := {x ∈ R2 : |x | = 1}.

Consider the following model problem
∆u + k2(1 + η(x))u = 0 in R2

u = uin + usc

lim
r→∞

r
n−1
2

(
∂usc

∂r − ikusc
)
= 0, r = |x |.

Inverse Problem: Given usc(·, d)|∂Ω for all d ∈ S , determine η.
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Deep Learning for inverse scattering

Supervised learning-based algorithms (far-from-complete list)

Z. Wei and X. Chen, Deep-learning schemes for full-wave nonlinear inverse scattering
problems, IEEE Trans. Geosci. Remote Sens., 57 (2019) 1849–1860.

Y. Khoo and L. Ying, SwitchNet: a neural network model for forward and inverse
scattering problems, SIAM J. Sci. Comput., 41 (2019) A3182-A3201.

Y. Sanghvi, Y. Kalepu, and U. Khankhoje, Embedding deep learning in inverse scattering
problems, IEEE Trans. Comput. Imaging, 6 (2020) 46–56.

X. Chen, Z. Wei, L. Maokun, P. Rocca, A review of deep learning approaches for inverse
scattering problems, Prog. Electromagn. Res., 167 (2020) 67–81.

Y. Gao, H. Liu, X. Wang, and K. Zhang, On an artificial neural network for inverse
scattering problems, J. Comput. Phys., 448 (2022) 110771.

M. Zhou, J. Han, M. Rachh, and C. Borges, A neural network warm-start approach for
the inverse acoustic obstacle scattering problem, J. Comput. Phys., 490 (2023) 112341.

...

Reconstruct unknown scattering objects that are similar or closely related
to known training datasets!
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Deep Learning for inverse scattering

Unsupervised learning: Physics Informed Neural Networks (PINNs)

M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear PDEs, J.
Comput. Phys. 378 (2019) 686-707.

Y. Chen, L. Lu, G. E. Karniadakis, and L. Dal Negro, Physics-informed neural networks
for inverse problems in nano-optics and metamaterials, Optics Express 28 (2020)
11618-11633.

Y. Chen and L. Dal Negro, Physics-informed neural networks for imaging and parameter
retrieval of photonic nanostructures from near-field data, APL Photonics 7 (2022) 010802.

A. Pokkunuru, P. Rooshenas, T. Strauss, A. Abhishek, T. Khan, Improved training of
physics-informed neural networks using energy-based priors: a study on electrical
impedance tomography, ICLR 2023 (20 pages).

Study inverse design problems with “internal” data!

Aravinth Krishnan (Kansas State University) The 9th SIAM CSS March 20, 2025 6 / 33



Our Algorithm

We developed a 2-step unsupervised deep learning algorithm to solve the
inverse scattering problem:

Step 1: Convert the boundary scattering data into an imaging
function I (z) which encodes geometrical information about η.

Step 2: Use I (z) as input for training. A model equation for I (z) and
η is employed to train a neural network which predicts η.
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Stable Imaging Function

For z ∈ R2, define the function

I (z) :=

∫
S

∫
∂Ω

usc(x , d)Φ(x , z) ds(x) Φ∞(d , z) ds(d),

where Φ(x , z) and Φ∞(d , z) denote the Green’s function and its
scattering amplitude respectively.

Theorem 1
The imaging function satisfies

I (z) =
kπ

2

∫
D

[
J20 (k|y − z |) + J0(k|y − z |)

∫
S

usc(y , d)Φ∞(d , z)ds(d)

]
η(y) dy

Proof: Helmholtz-Kirchoff identity and Funk-Hecke formula.
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Stable Imaging Function

We assume the noisy data uscδ satisfies

∥usc − uscδ ∥L2(∂Ω×S) ≤ δ∥usc∥L2(∂Ω×S).

Theorem 2

Let Iδ(z) the imaging function with noisy data uscδ . Then

|I(z)− Iδ(z)| ≤ Cδ, for all z ∈ R2,

where C is a positive constant which is independent of z and δ.
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An Example

(a) True profile (b) I (z) with 20% synthetic noise in data

Only geometrical information (location and shape) about the target is
reconstructed!

Reconstruction resolution is within the diffraction limit!
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A Model Equation

Under the Born approximation, we can derive

I (z)− kπ

2

∫
D
J20 (k |y − z |) η(y) dy = 0.

A simple and nice connection between I (z) and η.

This equation will be used as a (simplified) model equation in training
our neural network with data I (z).
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Model Informed Neural Network

Key Ideas:

I (z) can be obtained robustly and inexpensively from (noisy)
scattering data.

Use input data I (z) and the model equation to train neural networks
IΘ and ηΘ to predict η.
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Model Informed Neural Network

Let B be the domain in which we compute η. Given data I (z), we train IΘ
and ηΘ with the model equation

IΘ(z)−
kπ

2

∫
B
J20 (k|y − z |) ηΘ(y) dy = 0.

We consider the minimization problem

min
Θ

{MSD(Θ) +MSM(Θ)},

where

MSD(Θ) :=
1

N

N∑
j=1

|IΘ(zj)− I (zj)|2,

MSM(Θ) :=
1

M

M∑
j=1

∣∣∣∣IΘ(zj)− kπ

2

∫
B
J20 (k |y − zj |) ηΘ(y) dy

∣∣∣∣2 .
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Visual Representation

Let z = (x , y)⊤ ∈ R2.

Figure 2: Visual representation of the model-informed neural network
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Model Informed Neural Network

We consider a fully connected neural network:

Number of Neurons in Input Layer = 2

Number of Hidden Layers = 4

Number of Neurons in each Hidden Layer = 64

Number of Neurons in Output Layer = 3

Activation Function in Hidden Layers → Hyperbolic Tangent

Activation Function in Output Layers → Identity Function

Kernel Initializer = Glorot Normal

Learning Rate: 0.001

Optimizer: Adam

Number of Iterations: 150, 000
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Numerical study

Consider

Computational domain (−2, 2)2 with 64× 64 uniform grid points

Wave number k = 15

Measurement boundary ∂Ω is circle of radius 100 centered at (0, 0)⊤.

Synthetic additive noise model:

usc + δ
N

∥N∥
∥usc∥ ,

where δ is the noise level and N is noise matrix consisting of random
entries a+ bi for a, b ∈ (−1, 1)
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Example 1: Square profile, η = 0.3

Figure 3: True profile
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Example 1: Square profile, η = 0.3

Figure 4: Prediction with 0% synthetic noise
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Example 1: Square profile, η = 0.3

Figure 5: Prediction with 10% synthetic noise
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Example 1: Square profile, η = 0.3

Figure 6: Prediction with 20% synthetic noise
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Example 2: Elliptical profile, η = 3.0

Figure 7: True profile
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Example 2: Elliptical profile, η = 3.0

Figure 8: Prediction with 0% synthetic noise
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Example 2: Elliptical profile, η = 3.0

Figure 9: Prediction with 10% synthetic noise
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Example 2: Elliptical profile, η = 3.0

Figure 10: Prediction with 20% synthetic noise
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Example 3: Austria profile, η = 2.0

Figure 11: True profile
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Example 3: Austria profile, η = 2.0

Figure 12: Prediction with 0% synthetic noise
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Example 3: Austria profile, η = 2.0

Figure 13: Prediction with 10% synthetic noise
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Example 3: Austria profile, η = 2.0

Figure 14: Prediction with 20% synthetic noise
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Conclusion

We have developed an unsupervised and model-informed deep learning
algorithm to solve inverse scattering problems

The algorithm first extracts geometrical information about the target
from boundary data using an imaging function.

The algorithm incorporates a simple model integral equation into the
deep learning process instead of PDE models, eliminating the need for
automatic differentiation.

The method is highly robust against noisy data, ensuring stability and
accuracy in practical applications.
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Thank you for listening!
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