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Goal of this Presentation

Provide a roadmap of different classical and modern theorems in the
Approximation theory of Neural Networks
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Approximation of univariate real-valued functions with
neural networks

Theorem 1

Suppose g : R→ R is ρ-Lipschitz. For any ϵ > 0, there exists a 2 layer
network f with ⌈ρϵ ⌉ threshold nodes z 7→ 1[z≥0] such that

sup
x∈[0,1]

|f (x)− g(x)| ≤ ϵ.
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Proof

Discretise the x-axis interval [0, 1] using the step size ϵ
ρ

Let m be the number of subintervals in [0, 1]. So, m := ⌈ρϵ ⌉
Let bi :=

iϵ
ρ . So, the interval [0, 1] is partitioned by

P = {b0, b1, b2, ..., bm−1} for i ∈ {0, 1, 2, ...,m − 1}.

Aravinth Krishnan (Kansas State University) QEII Minor Exam March 20, 2025 4 / 50



Proof

Define:

a0 := g(0),

and

ai := g(bi )− g(bi−1).
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Proof

We define f as follows

f (x) :=
m−1∑
i=0

ai1x≥bi
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Proof

We shall prove the following:

satisfies the condition

sup
x∈[0,1]

|f (x)− g(x)| ≤ ϵ,

f (x) can be represented as a 2 layer network with ⌈ρϵ ⌉ threshold
nodes.
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Proof

|g(x)− f (x)| = |g(x)− g(bk) + g(bk)− f (bk) + f (bk)− f (x)|
≤ |g(x)− g(bk)|+ |g(bk)− f (bk)|+ |f (bk)− f (x)|

= ρ|x − bk |+ |g(bk)−
k∑

i=0

ai |+ 0

≤ ρ(
ϵ

ρ
) + |g(bk)− g(b0)−

k∑
i=1

(g(bi )− g(bi−1))|

= ϵ.

Hence, we have showed that f satisfies the condition

sup
x∈[0,1]

|f (x)− g(x)| ≤ ϵ.
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f as a Neural Network

1x≥b = H(x − b), where H(x) denotes the Heaviside activation function:

Figure 1: Heaviside Function

So,

f (x) :=
m−1∑
i=0

ai1x≥bi

=
m−1∑
i=0

aiH(x − bi )
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Visual Representation of f as a Neural Network

We can see that there are m neurons in the hidden layer. Thus, the depth
of the network is m = ⌈ρϵ ⌉.
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Building a Step function for the Multivariate Case

Theorem 2

Let g : Rd → R be a continuous function and an ϵ > 0 be given, and
choose δ > 0 so that ||x − x

′ ||∞ ≤ δ implies |g(x)− g(x
′
)| ≤ ϵ. Let any

set U ⊂ Rd be given, along with a partition P of U into rectangles
(product of intervals) P = (R1,R2, ...,RN) with all sides lengths not
exceeding δ. Then, there exist scalars (α1, ..., αN) such that

sup
x∈U
|g(x)− h(x)| ≤ ϵ,

where h(x) =
∑N

i=1 αi1Ri
(x).

Aravinth Krishnan (Kansas State University) QEII Minor Exam March 20, 2025 11 / 50



Intuition

For each Ri in the partition P, pick an arbitrary xi ∈ Ri and set
αi := g(xi ). Then,

h(x) =
N∑
i=1

αi1Ri
(x) =

N∑
i=1

g(xi )1Ri
(x)

Now, we have to show that the function h constructed from the set of αi s
arbitrarily picked satisfies the condition:

sup
x∈U
|g(x)− h(x)| ≤ ϵ.
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Proof

supx∈U |g(x)− h(x)| = supi∈{1,..,N} supx∈Ri
|g(x)− h(x)|
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Proof

Thus, we have:

sup
x∈U
|g(x)− h(x)| = sup

i∈{1,..,N}
sup
x∈Ri

|g(x)− h(x)|

= sup
i∈{1,..,N}

sup
x∈Ri

|g(x)− g(xi ) + g(xi )− h(x)|

≤ sup
i∈{1,..,N}

sup
x∈Ri

(|g(x)− g(xi )|+ |g(xi )− h(x)|)

≤ sup
i∈{1,..,N}

sup
x∈Ri

(ϵ+ |g(xi )− αi |)

= ϵ.
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Theorem

Theorem 3

Let g : Rd → R be a continuous function and an ϵ > 0 be given, and
choose δ > 0 so that ||x − x

′ ||∞ ≤ δ implies |g(x)− g(x
′
)| ≤ ϵ. Then,

there exists a 3-layered network f with Ω( 1
δd
) ReLU with∫

[0,1]d
|f (x)− g(x)|dx ≤ 2ϵ.
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Proof

Let P denote a partition of [0, 2)d into rectangles of the form Πd
j=1[aj , bj),

with bj − aj ≤ δ. The final result will work when we restrict the
considerations to [0, 1]d , but we include an extra regions to work with
half-open intervals in a lazy way.
From theorem 2.2, there exist scalars (α1, ..., αN) so that

sup
x∈U
|g(x)− h(x)| ≤ ϵ,

where h =
∑N

i=1 αi1Ri
.
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Proof

Our final constructed network f will be of the form:

f (x) :=
∑
i

αig i (x),

where each g i will be a ReLU Network with 2 hidden layers and O(d)
neurons. Our goal is to show

∫
[0,1]d |f (x)− g(x)|dx ≤ 2ϵ. That is to say:

||f − g ||1 ≤ 2ϵ
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Proof

To this end, note that:

||f − g ||1 = ||f − h + h − g ||1
≤ ||f − h||1 + ||h − g ||1
= ||

∑
i

αi (1Ri
− g i )||1 + ϵ

≤
∑
i

|αi | · ||1Ri
− g i ||1 + ϵ

Then, we need to construct each g i such that ||1Ri
− g i ||1 ≤ ϵ∑

i αi
.
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Proof

Fix the rectangle Ri selected from the partition P. Then, Let
Ri := [a1, b1)× [a2, b2)× ...× [ad , bd).
Set γ > 0 to be a hyperparameter. For each j ∈ {1, 2, 3, ..., d},

gγ,j(z) = σ(
z − (aj − γ)

γ
)− σ(

z − aj
γ

)− σ(
z − bj

γ
) + σ(

z − (bj + γ)

γ
),

=


1, if z ∈ [aj , bj)

0, if z /∈ [aj − γ, bj + γ)

[0, 1], otherwise

(a) Partition P of U (b) Plot of g(1, 1)(z) (c) Plot of g(1, 2)(z)
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Proof

Then, we define g i as:

gγ = σ

∑
j

gγ,j(xj)− (d − 1)


Note that

1Ri
(x) ≈ g i (x) =


1, if x ∈ [a1, b1)× [a2, b2)× ...× [ad , bd)

0, if x /∈ [a1 − γ, b1 + γ)× ...× [ad − γ, bd + γ)

[0, 1], otherwise

(a) gγ(3D) (b) gγ(2D)
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Proof

||1Ri
− g i ||1

=

∫
[0,2)d

|1Ri
− g i |dx

=

∫
Ri

|1Ri
− g i |dx +

∫
B\Ri

|1Ri
− g i |dx +

∫
[0,2)d\B

|1Ri
− g i |dx

≤0 + Πd
j=1(bj − aj + 2γ) + Πd

j=1(bj − aj) + 0

=O(γ)

where B = [a1 − γ, b1 + γ)× ...× [ad − γ, bd + γ).
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Proof

This means we can ensure ||1Ri
− g i ||1 ≤ ϵ∑

i αi
by choosing sufficiently

small γ, thus completing the proof.
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Visualisation

(a) gγ,j(xj) (b) g(x) (c) f (x)
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Weakness of Previous Proof

The theorem above has 2 weakness:

2 Hidden layers are used in the neural network

A specific activation function is used to approximate g
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Improvements on the previous theorem

In the previous theorem, we used 2 hidden layers to construct gγ . In
constructing f , we had to approximate

x 7→ 1Ri
(x) = 1[a1,b1]×...×[ad ,bd ](x).

If we had a way to approximate multiplication, we could instead
approximate

x 7→ 1[a1,b1](x)× 1[a2,b2](x)× ...× 1[ad ,bd ](x).
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Introducing Universal Approximators

Can we approximate multiplication and then form a linear combination, all
with just one hidden layer?

YES!
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Definition of Universal Approximators

Definition 4 (Universal Approximators)

A class of functions F is an Universal Approximator over a compact set S
if for every continuous function g and a target accuracy ϵ > 0, there exists
f ∈ F with

sup
x∈S
|f (x)− g(x)| ≤ ϵ.

Notes:

Compactness is necessary (sin(x))

Can be more succinctly written as some class being dense in all
continuous functions over compact sets.

How do we know if F is an universal approximator?
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Basis of Universal Approximation Theorem

The Stone-Weierstrass theorem serves as a good tool to show if some F is
a universal approximator.
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Stone-Weierstrass Theorem (Folland 1999, Theorem 4.45)

Theorem 5 (Stone-Weierstrass)

Let F denote a class of functions and f ∈ F be given as follows:

1 Each f ∈ F is continuous

2 For every x ∈ X , there exists f ∈ F with f (x) ̸= 0

3 For every x ̸= x
′
, there exists f ∈ F with f (x) ̸= f (x

′
) (That is to say

F separates points)

4 F is closed under multiplication and vector space operations (F is an
algebra)

Then, F is an universal approximator: For every continuous g : Rd → R
and ϵ > 0, there exists f ∈ F with supx∈[0,1]d |f (x)− g(x)| ≤ ϵ.
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Representation of Universal Approximators

Let

σ → Activation Function

d → Input Dimension

m→ Depth of Neural Network

Then, Fσ,d ,m and Fσ,d be defined as follows:

Fσ,d ,m := Fd ,m := {x 7→ aTσ(Wx + b) : a ∈ Rm,W ∈ Rm x d , b ∈ Rm}
Fσ,d := Fd := ∪m≥0Fσ,d ,m
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Visualising Fσ,d ,1 and Fσ,d ,2

(a) Fσ,d,1 (b) Fσ,d,2
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Examples of Universal Approximators

Example 1: Fcos,d is an universal approximator

Example 2: Fexp,d is an universal approximator
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Approximation near initialization and the Neural Tangent
Kernel

Now, we will consider networks close to their random initialisation. The
core idea is to compare a network:

f : Rd x Rp → R
(x ,W ) 7→ fW (x)

to its first order Taylor approximation at a random initialization W0:

f 0(x ;W ) := f (x ;W0) + ⟨∇W f (x ;W0),W −W0⟩.
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Goals

The goal of this subsection is to:

We will show that near initialisation, with large width, f ≈ f0
(f is effectively linear near initialisation)

Show these neural networks near initialisation are already universal
approximators
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The Shallow Case

This is our shallow neural network:

f (x ;W ) :=
1√
m

m∑
j=1

ajσ(w
T
j x)

=
1√
m

(
a1σ(w

T
1 x) + a2σ(w

T
2 x) + ...+ amσ(w

T
m x)

)
where

W :=


← wT

1 →
← wT

2 →
·
·

← wT
m →

 ∈ Rm x d ,

where σ will either be a smooth activation or the ReLU, and we will treat
a ∈ Rm as fixed and only allow W ∈ Rm x d to vary.
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Visualisation
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The first order Taylor Approximation at initialisation

Assume σ is any univariate activation which is differentiable except on a
set of measure 0, and let W0 be the Gaussian initialisation. Then, the first
order Taylor Approximation at W = W0 is:

f 0(x ;W ) = f (x ;W0) + ⟨∇W f (x ;W0),W −W0⟩

=
1√
m

m∑
j=1

aj(σ(w
T
0,jx) + σ

′
(w0,jx

T )(wj − w0,j))

=
1√
m

m∑
j=1

aj([σ(w
T
0,jx)− σ

′
(w0,j)w

T
0,jx ] + σ

′
(w0,j)w

T
j x).
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Theorem

Now, we will see that f − f0 → 0 as m→∞.

Theorem 6

If σ : R→ R is β-smooth and |aj | ≤ 1, and ||x ||2 ≤ 1, then for any
parameters W ,V ∈ Rm x d ,

|f (x ;W )− f0(x ;V )| ≤ β

2
√
m
||W − V ||2F .

Set V = W0. Small ||W −W0|| means that the weight W is close to the
initialisation weights W0. Then, the theorem tells us that as m→∞, our
neural network f at weight W gets closer and closer to the Taylor
approximation of our neural network initialised at weight W0.
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Proof

|f (x ;W )− f0(x ;V )| = |f (x ;W )− f (x ;V0)+ < ∇W f (x ;V ),W − V >

≤ 1√
m

m∑
j=1

|aj | · |σ(wT
j x)− σ(vTj x)

− σ
′
(vTj x)xT (wj − vj)|

≤ 1√
m

m∑
j=1

β(wT
j x − vTj x)2

2

≤ β

2
√
m

m∑
j=1

||wj − vj ||2

=
β

2
√
m
||W − V ||2F
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Next Goal

So far, we have said that f − f0 is small when the width is large.

QUESTION: We know that neural networks are universal approximators.
But when does it start having this property?

We will show that when the width is large, neural networks close to
initialisation, f , are already universal approximators:

We saw that f is approximately equal to some linear space, f0, which
is can be seen as a feature space

This allows us to consider the kernel corresponding to said feature
space and these allows us to bring in new tools to establish our claim
above.
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Key Definitions

Definition 7 (Kernel, Feature Map and Feature Space)

Let X be a non-empty set. Then, a function k : X x X → R is called a
kernel on X if there exists a R-Hilbert Space H and a map Φ : X → H
such that for all x , x

′ ∈ X , we have

k(x , x
′
) =

〈
Φ(x),Φ(x

′
)
〉
.

We call Φ a feature map and H a feature space of k .
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Feature Map (Neural Network Setting)

∇f (·;W0) : x 7→ ∇f (x ;W0) defines a feature mapping:

∇f (x ;W0) =


← a1σ

′
(wT

0,1x)x
T →

·
·
·

← amσ
′
(wT

0,mx)x
T →

 .

Note that x ∈ Rd and f (x ;W0) ∈ Rm x d ∼= Rmd (d << md)
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Kernel (Neural Network Setting)

km(x , x
′
) := ⟨∇W f (x ,W0),∇W f (y ,W0)⟩

=

〈
a1x

Tσ
′
(wT

1,0x)/
√
m

·
·
·

amx
Tσ

′
(wT

m,0x)/
√
m

 ,


a1y

Tσ
′
(wT

1,0y)/
√
m

·
·
·

amy
Tσ

′
(wT

m,0y)/
√
m


〉

=
1

m

m∑
j=1

a2j

〈
xσ

′
(wT

j ,0x), yσ
′
(wT

j ,0y)
〉

= xT y

 1

m

m∑
j=1

σ
′
(wT

j ,0x)σ
′
(wT

j ,0y)

 ∈ R

Justification for 1√
m
: Kernel is now an average, not a sum. We can expect

a limit as m→∞.
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Theorem

TASK: Show functions near initialisation are universal approximators.
Define H as follows:

X :=

{
x ∈ Rd : ||x || = 1, xd =

1√
2

}

H :=

x 7→
m∑
j=1

αjk(x , xj) : m ≥ 0, αj ∈ R, xj ∈ X


H is nothing more than the set of infinite width neural networks near its
initialization, each infinite width neural network represented as a linear
combination of kernels. (Showing why that’s the case it beyond the scope
of the minor.)
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Theorem

Theorem 8

H is a universal approximator over X ; that is to say, for every continuous
g : Rd → R and every ϵ > 0, there exists a f ∈ H with
supx∈X |g(x)− f (x)| ≤ ϵ.
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Proof

Let U := {u ∈ Rd−1 : ||u||2 ≤ 1
2}, and k be the kernel function as defined

below:

k(u, u
′
) := f (uTu

′
)

f (z) :=
z + 1

2

2
−

(z + 1
2)arccos(z +

1
2)

2π
.

We shall show that k is an universal approximator over U.
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Proof

Note that arccos has the maclaurin series

arccos(z) =
π

2
−
∑
k≥0

(2k)!

22k(k!)2
z2k+1

2k + 1
,

which is convergent over z ∈ [−1, 1]. Note every term is positive (adding
the bias term ensured this).
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Proof

Using the following collary,

Theorem 9 (Universal Taylor Kernels)

Fix an r ∈ (0,∞] and a C∞ function f : (−r , r)→ R that can be
expanded into its taylor series at 0,

f (t) =
∞∑
n=0

ant
n, t ∈ (−r , r).

Let X := {x ∈ Rd : ||x ||2 <
√
r}. If we have an > 0 for all n ≥ 0, then k

given by:

k(x , x
′
) := f (< x , x

′
>)

is a universal kernel on every compact subset of X .

we can see that k is an universal approximator on U.
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Proof

Since k is an universal approximator on U, k is also an universal
approximator on ∂U and thus, the kernel is an universal approximator over
X .
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The end
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