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Direct Source Problem

Direct Source Problem: Given a source that radiates waves, determine
the waves.
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Mathematical Formulation of Direct Source Problem

Let f ∈ L2(R2) be a bounded function with compact support.

The direct source problem:{
∆u + k2u = f , in R2

∂u
∂r − iku = O

(
1
r2

)
, as r = |x | → ∞.

Given f , determine u.
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Green’s Function

Definition 1 (Green’s Function)

The Green’s function Φ(x , y), is the fundamental solution to the
Helmholtz equation and is defined as follows:

Φ(x , y) =
i

4
H1
0 (k|x − y |),

where x ̸= y .

Here, H1
0 (k |x − y |) is called the Hankel function of the first kind and of

order 0. It is defined as follows:

H1
0 (z) = J0(z) + iY0(z),

where J0 and Y0 are the Bessel function of the first kind and second kind
respectively. Important Facts:

Φ(x , y) satisfies the Sommerfeld radiation condition.

Φ(x , y) has a singularity at x = y .
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Green’s Representation Theorem

Theorem 2

Let u ∈ H2(Ω). Then, we have

u(x) =

∫
∂Ω

{
∂u

∂n
(y)Φ(x , y)− u(y)

∂Φ(x , y)

∂n(y)

}
dS(y)

−
∫
Ω

{
∆u(y) + k2u

}
Φ(x , y)dy , x ∈ Ω,

In particular, if ∆u + k2u = 0 in Ω, then

u(x) =

∫
∂Ω

{
∂u

∂n
(y)Φ(x , y)− u(y)

∂Φ(x , y)

∂n(y)

}
dS(y), x ∈ Ω.

We will first show that if u ∈ C 2(Ω), then the theorem holds. Then, we
can use density arguments to establish the results when u ∈ H2(Ω).
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Main Idea

Singularity at x = y prevents us from using Φ in Green’s second identity.
Thus, we circumscribe an arbitrary fixed point x ∈ Ω with a ball B(x ; ϵ)
contained in Ω.

Then, for sufficiently small ϵ > 0, applying Green’s second identity to u
and ϕ, we have:∫

Ω\B(x,ϵ)

∆u(y)Φ(x , y)− u(y)∆Φ(x , y)dy =

∫
∂Ω

∂u(y)

∂n
Φ(x , y)− u(y)

∂Φ(x , y)

∂n(y)
dS(y)

+

∫
∂B(x,ϵ)

∂u

∂n
Φ(x , y)− u(y)

∂Φ(x , y)

∂n(y)
dS(y).
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Main Idea

Using the definition of the Green’s function and arguing by estimates, we
obtain:

∫
∂B(x,ϵ)

∂u

∂n
Φ(x, y) − u(y)

∂Φ(x, y)

∂n(y)
dS(y) =

∫
∂B(x,ϵ)

∂u

∂n
Φ(x, y)dS(y)︸ ︷︷ ︸

→ 0

−
∫
∂B(x,ϵ)

u(y)
∂Φ(x, y)

∂n(y)
dS(y)︸ ︷︷ ︸

→ u(x)

,

as ϵ → 0.

On the other hand, from the fact that ∆Φ(x , y) + k2Φ(x , y) = 0, we get

∫
Ω\B(x,ϵ)

∆u(y)Φ(x, y) − u(y)∆Φ(x, y)dy =

∫
Ω\B(x,ϵ)

(
∆u(y) + k2u(y)

)
Φ(x, y)dy.

Hence, as ϵ → 0, we get:

∫
Ω

(
∆u(y) + k2u(y)

)
Φ(x, y)dy =

∫
∂Ω

∂u(y)

∂n
Φ(x, y) − u(y)

∂Φ(x, y)

∂n(y)
dS(y) − u(x),

which is our desired result.
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Sobolev Case

Since C 2(Ω) is dense in H2(Ω), for u ∈ H2(Ω), there exist (um) ⊂ C 2(Ω)
such that um → u in H2(Ω). Then, by trace theorem and embedding
arguments,

||um − u||L2(∂Ω) ≤ C ||um − u||H1(Ω) ≤ C ||um − u||H2(Ω)∣∣∣∣∣∣∣∣∂um∂n
− ∂u

∂n

∣∣∣∣∣∣∣∣
L2(∂Ω)

≤ C

∣∣∣∣∣∣∣∣∂um∂n
− ∂u

∂n

∣∣∣∣∣∣∣∣
H1(Ω)

≤ C ||um − u||H2(Ω),

it follows that:

||∆um −∆u||L2(∂Ω) ≤ C ||um − u||H2(Ω).

So, Green’s representation theorem also holds for u ∈ H2(Ω).
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Exterior Green’s Representation

Theorem 3

Let u ∈ H2
loc(R2 \ Ω). If u is a radiating solution, then

u(x) =

∫
∂Ω

u(y)
∂Φ(x , y)

∂n(y)
− ∂u(y)

∂n
Φ(x , y)dS(y), x ∈ R2 \ Ω.

By the Interior Green Representation Theorem in Ωr , ∀x ∈ R2 \ Ω,

u(x) =−
∫
∂Ω

∂u(y)

∂n
Φ(x , y)− u(y)

Φ(x , y)

∂n(y)
dS(y)

−
∫
∂B(0,r)

∂u(y)

∂n
Φ(x , y)− u(y)

Φ(x , y)

∂n(y)
dS(y).

Claim: As r → ∞,∫
∂B(0,r)

∂u(y)

∂n
Φ(x , y)− u(y)

Φ(x , y)

∂n(y)
dS(y) → 0
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Main Idea

Step 1: Show
∫
B(0,r) |u|

2ds = O(1).

From the radiation condition, it follows that:

∫
∂B(0,r)

∣∣∣∣ ∂u
∂r

− iku

∣∣∣∣2 dS(y) =

∫
∂B(0,r)

∣∣∣∣ ∂u
∂r

∣∣∣∣2 + k2|u|2 + 2kIm

(
u
∂u

∂r

)
dS(y) → 0

as r → ∞.
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Main Idea

Apply Green’s first theorem to Ωr :∫
B(0,r)

u
∂u

∂r
ds =

∫
∂Ω

u
∂u

∂r
ds − k2

∫
Ωr

|u|2dy +

∫
Ωr

|∇u|2dy .

Take imaginary part of both sides, apply it to the previous equation, we
get:

lim
r→∞

∫
B(0,r)

∣∣∣∣∂u∂r
∣∣∣∣2 + k2|u|2ds = −2Im

∫
∂Ω

u
∂u

∂r
ds.

Both terms on the LHS are non-negative. RHS is indepedent of r . Thus,
both terms on the LHS are individually bounded as r → ∞, proving our
claim.
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Main Idea

Step 2: By the Cauchy-Schwarz inequality, the claim above and the fact
that Φ satisfies the radiation condition,∫

∂B(0,r)
u(y)

(
∂Φ(x , y)

∂n
− ikΦ(x , y)

)
dS(y)︸ ︷︷ ︸

I1

→ 0 as r → ∞.

By Cauchy-Schwarz inequality, radiation condition for u, and
Φ(x , y) = O(1r ),∫

∂B(0,r)
Φ(x , y)

(
∂u(y)

∂n
− iku(y)

)
dS(y)︸ ︷︷ ︸

I2

→ 0 as r → ∞.

And from there, we obtain

I1 − I2 =

∫
∂B(0,r)

u(y)
∂Φ(x , y)

∂n(y)
− ∂u(y)

∂n
Φ(x , y)dS(y) → 0 as r → ∞.
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Corollary

Theorem 4

If u satisfies

∆u + k2u = 0, in R2

∂u

∂r
− iku = O

(
1

r2

)
, r = |x | → ∞,

then u = 0 in R2.

Cases:

R2 \ Ω
Ω
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Main Idea: R2 \ Ω

For x ∈ R2 \ Ω, by the exterior Green representation theorem:

u(x) =

∫
∂Ω

u(y)
∂Φ(x , y)

∂n(y)
− ∂u(y)

∂n
Φ(x , y)ds(y).

By the Green’s second identity,∫
∂Ω

u(y)
∂Φ(x , y)

∂n(y)
− ∂u(y)

n(y)
Φ(x , y)dy

=

∫
Ω
u(y)∆Φ(x , y)−∆u(y)Φ(x , y)dy

Since ∆u + k2u = 0, in R2, we have:

u(x) =

∫
Ω

(
∆Φ(x , y) + k2Φ(x , y)

)
u(y)dy = 0. (1)
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Main Idea: Ω

For x ∈ Ω, by the Interior Green’s Representation:

u(x) =

∫
∂Ω

(
∂u(y)

∂n
Φ(x , y)− u(y)

∂Φ(x , y)

∂n(y)

)
ds(y).

Since u is analytic in R2 =⇒ u is continuous across the boundary.

Therefore, u(y) = 0 on ∂Ω and hence, u(x) = 0, for x ∈ Ω.

Together with (1), it follows that u = 0 ∈ R2.
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Existence and Uniqueness of Solution

Theorem 5

The problem

∆u + k2u = f , f ∈ C∞
0 (Ω)

∂u

∂r
− iku = O

(
1

r2

)
, r = |x | → ∞

has a unique solution.

Assume that u1 and u2 are the solutions to the PDE Problem. Then,

∆(u1 − u2) + k2(u1 − u2) = 0,

∂(u1 − u2)

∂r
− ik(u1 − u2) = O(

1

r2
),

as r = |x | → ∞. Then, by theorem 4, we have u1 − u2 = 0 in R2.
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Main Idea

Let u(x) = Φ ∗ f =
∫
R2 Φ(x , y)f (y)dy . First, it is clear that

∆u + k2u = f in the distributional sense.

Next, note that u can be expressed as follows, using the far field
representation of Φ:

u(x) =

∫
R2

Φ(x , y)f (y)dy

=

∫
R2

Φ(x)

(
Φ∞(x̂) +O

(
1

r

))
f (y)dy

= Φ(x)

∫
R2

Φ∞(x̂)f (y) +O
(
1

r

)
f (y)dy .

The form above establishes that u behaves like Φ as |x | → ∞. Since, Φ
satsifies the Sommerfeld radiation condition, it follows that u satisfies the
radiation condition.
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Main Idea

For the case, f ∈ L2(Ω), we can use density of C∞
0 (Ω) in L2(Ω) and get

the same result.

Definition 6 (Volume Potential)

u(x) =
∫
R2 Φ(x , y)f (y)dy is called the volume potential.

Aravinth Krishnan (Kansas State University) March 20, 2025 19 / 44



Outline

1 Direct Source Problem

2 Inverse Source Problem & Numerical Methods

3 A Model-Informed Neural Network Algorithm

4 Extension to Inverse Scattering Problems

Aravinth Krishnan (Kansas State University) March 20, 2025 20 / 44



Inverse Source Problem

Direct Source Problem: Given a source that radiates waves, determine
the waves.
Inverse source problem: Given information of the waves at the boundary,
recover the physical and geometrical information about the source.
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Mathematical formulation of inverse source problem

Let f ∈ L2(Ω), where Ω is a large disk such that supp(f ) = D ⊂ Ω.{
∆u + k2u = f , in R2

∂u
∂r − iku = O

(
1
r2

)
, as r = |x | → ∞.

Inverse problem: Given u(·, k)|∂Ω for k ∈ [k1, k2], determine f .

Uniqueness and stability of solution for the inverse source problem:

Bao, G., Lin, J., & Triki, F. (2010). A multi-frequency inverse source
problem. Journal of Differential Equations, 249, 3443-3465.

Theorem 7

Given a set of real numbers [k1, k2], the measurements u(·, k)|∂Ω, where
k ∈ [k1, k2], determine uniquely the source function f .
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Numerical methods to solve inverse source problems

Traditional numerical schemes (far-from-complete list):
Bao, G., Lin, J., & Triki, F. (2011). Numerical solution of the inverse source problem for
the Helmholtz Equation with multiple frequency data.

Acosta, S., Chow, S., Taylor, J., & Villamizar, V. (2012). On the multi-frequency inverse
source problem in heterogeneous media. Inverse Problems, 28.

Eller, M., & Valdivia, N. (2009). Acoustic source identification using multiple frequency
information. Inverse Problems, 25, 115005.

Bao, G., Lin, J., & Triki, F. (2010). A multi-frequency inverse source problem. Journal of
Differential Equations, 249, 3443-3465.

Kress, R., & Rundell, W. (2013). Reconstruction of extended sources for the Helmholtz
equation. Inverse Problems, 29.

Karamehmedovi’c, M., Kirkeby, A., & Knudsen, K. (2018). Stable source reconstruction
from a finite number of measurements in the multi-frequency inverse source problem.
Inverse Problems, 34.

Eibert, T.F. (2023). Multiple-Frequency Preconditioned Iterative Inverse Source Solutions.
IEEE Transactions on Microwave Theory and Techniques, 71, 2842-2853.

Severely illposed =⇒ numerical schemes require regularization strategies
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Deep learning based algorithms for multifrequency inverse
source problems

Deep learning-based algorithms (far-from-complete list):
Dong, Y., Sadiq, K., Scherzer, O., & Schotland, J.C. (2024). Computational inverse
scattering with internal sources: a reproducing kernel Hilbert space approach. Physical
review. E, 110 6-2, 065302 .

Meng, S., & Zhang, B. (2024). A Kernel Machine Learning for Inverse Source and
Scattering Problems. SIAM J. Numer. Anal., 62, 1443-1464.

Zhang, H., & Liu, J. (2023). Solving an inverse source problem by deep neural network
method with convergence and error analysis. Inverse Problems, 39.

Solve inverse source problems with “internal” data!
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Proposed Algorithm

We developed a 2-step unsupervised deep learning algorithm to solve the
inverse source problem:

Step 1: Convert the boundary data into an imaging function I(z)
which encodes geometrical information about f .

Step 2: Use I(z) as input for training. A model equation for I(z)
and f is employed to train a neural network which predicts f .

(a) Original source (b) Data from I
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Stable Imaging Function

For each k ∈ [k1, k2], for z ∈ R2, define the function

I(z , k) :=
∫
∂Ω

u(x , k)Φk(x , z) dS(x),

where Φk(x , z) denotes the Green’s function.

We assume the noisy data uδ satisfies

∥u − uδ∥L2(∂Ω×S) ≤ δ∥u∥L2(∂Ω×S).

Theorem 8

Let Iδ(z) the imaging function with noisy data uδ. Then

|I(z)− Iδ(z)| ≤ Cδ, for all z ∈ R2,

where C is a positive constant which is independent of z and δ.
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Main Idea

|I(z)− Iδ(z)| =
∣∣∣∣∫

∂Ω
u(x , k)Φk(x , z) dS(x)−

∫
∂Ω

uδ(x , k)Φk(x , z) dS(x)

∣∣∣∣
=

∣∣∣∣∫
∂Ω

(u(x , k)− uδ(x , k))Φk(x , z) dS(x)

∣∣∣∣
≤

∫
∂Ω

||u(x , k)− uδ(x , k)||
∣∣∣∣∣∣Φk(x , z)

∣∣∣∣∣∣ dS(x)
≤

∫
∂Ω

δ ||u(x , k)||
∣∣∣∣∣∣Φk(x , z)

∣∣∣∣∣∣ dS(x)
= δ

∫
∂Ω

||u(x , k)||
∣∣∣∣∣∣Φk(x , z)

∣∣∣∣∣∣ dS(x)︸ ︷︷ ︸
C
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Helmholtz Kirchhoff identity

Theorem 9 (Helmholtz Kirchhoff identity)

Let supp(f ) ⊂ B(0,D) ⊂ ∂Ω. Then ∀x1, x2 ∈ B(0,D), we have

Φ(x1, x2)− Φ(x1, x2) = 2ki

∫
∂Ω

Φ(x1, y)Φ(x2, y)dS(y).

Key Idea behind Proof:

Green’s Identity

Sommerfeld radiation condition
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Significance of the model equation

Theorem 10

The imaging function I(z) satisfies

I(z , k) = 1

4k

∫
Ω
J0(k |y − z |) f (y) dy

Proof: Using the volume potential and the Helmholtz-Kirchhoff identity.

Significance:

A simple and nice connection between I(z) and f .

This equation will be used as a model equation in training our neural
network with data I(z).
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Main idea

For each k ∈ [k1, k2], for z ∈ R2,∫
∂Ω

u(x)Φ(x , z) dS(x) =

∫
∂Ω

∫
R2

Φ(x , y)f (y)dyΦ(x , z) dS(x)

=

∫
Ω

∫
∂Ω

Φ(x , y)Φ(x , z) dS(x)f (y) dy

=
1

4k

∫
Ω
J0(k |y − z |)f (y) dy
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Idea behind PINN

Concept leverages on the fact that deep neural networks are universal
approximators

Based on the elementary observation that: If a surrogate function
wθ ∈ H satisfies

I(z , k)− 1

4k

∫
Ω
J0(k |y − z |)wθ(y) dy ≈ 0,

then f ≈ wθ.
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Training Process

Ansatz Space/Hypothesis space H : Space of Neural Networks with the
following configuration:

Depth of Neural Network: 4

Width of Neural Network: 64

Activation Functions: Hyperbolic Tangent Function

With the chosen space H in place, our physics-based loss functional L[·] is:

L : H → R

fθ 7→
1

M

M∑
i=1

 1

N

N∑
j=1

[
I(zj , ki )−

1

4ki

∫
Ω
J0(ki |zj − y |)fθ(y)dy

] .

Minimization Problem:

min
wθ∈H

1

M

M∑
i=1

 1

N

N∑
j=1

[
I(zj , ki )−

1

4ki

∫
Ω
J0(ki |zj − y |)wθ(y)dy

]
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Visual Representation

Let z = (x , y)⊤ ∈ R2.

Figure 3: Visual representation of the model-informed neural network

Training is executed by:

Adams Optimizer

Glorot Uniform Weight Initialiser
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Some numerical results

Reconstruction with 20% artifical noise introduced to the boundary data:

(a) Original Source (b) Predicted (c) Least Square
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Review

We have developed an unsupervised, model-informed deep learning
algorithm to solve inverse source problems

In step 1, regularization is done automatically =⇒ no need for
additional regularization

The algorithm incorporates a simple model integral equation into the
deep learning process instead of PDE models, eliminating the need for
automatic differentiation =⇒ computationally cheaper

The method is highly robust against noisy data, ensuring stability and
accuracy in practical applications.
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Extension - Inverse Scattering Problems

Can be extended to solve inverse scattering problems too

Inverse scattering problem: Determine the scattering object from
boundary measurements of scattered wave (for several incident waves).

Applications: Radar, non-destructive testing, geophysical exploration,
medical imaging, ...
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Mathematical Formulation

Let η : R2 → R be bounded function satisfying η = 0 in R2 \ D. Let
Ω be large disk such that D ⊂ Ω. Consider incident waves

uin(x , d) = e ikd ·x

where d ∈ S1 := {x ∈ R2 : |x | = 1}.

Consider the following model problem
∆u + k2(1 + η(x))u = 0, in R2

u = uin + usc ,

lim
r→∞

r
n−1
2

(
∂usc

∂r − ikusc
)
= 0, r = |x |.

Inverse Problem: Given usc(·, d)|∂Ω for all d ∈ S1, determine η.
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Deep Learning for inverse scattering

Supervised learning-based algorithms (far-from-complete list)

Wei, Z., & Chen, X. (2019). Deep-Learning Schemes for Full-Wave Nonlinear Inverse
Scattering Problems. IEEE Transactions on Geoscience and Remote Sensing, 57,
1849-1860.

Khoo, Y., & Ying, L. (2018). SwitchNet: a neural network model for forward and inverse
scattering problems. ArXiv, abs/1810.09675.

Sanghvi, Y., Kalepu, Y., & Khankhoje, U.K. (2020). Embedding Deep Learning in Inverse
Scattering Problems. IEEE Transactions on Computational Imaging, 6, 46-56.

Chen, X., Wei, Z., Li, M., & Rocca, P. (2020). A Review of Deep Learning Approaches
for Inverse Scattering Problems (Invited Review). Progress In Electromagnetics Research.

Gao, Y., Liu, H., Wang, X., & Zhang, K. (2021). On an artificial neural network for
inverse scattering problems. J. Comput. Phys., 448, 110771.

Zhou, M., Han, J., Rachh, M., Borges, C. (2022). A Neural Network Warm-Start
Approach for the Inverse Acoustic Obstacle Scattering Problem. ArXiv, abs/2212.08736.

...

Reconstruct unknown scattering objects that are similar or closely related
to known training datasets!
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Deep Learning for inverse scattering

Unsupervised learning: Physics Informed Neural Networks (PINNs)

Raissi, M., Perdikaris, P., & Karniadakis, G.E. (2019). Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. J. Comput. Phys., 378, 686-707.

Chen, Y., Lu, L., Karniadakis, G.E., & Dal Negro, L. (2019). Physics-informed neural
networks for inverse problems in nano-optics and metamaterials. Optics express, 28 8,
11618-11633 .

Chen, Y., & Dal Negro, L. (2021). Physics-informed neural networks for imaging and
parameter retrieval of photonic nanostructures from near-field data. APL Photonics.

Pokkunuru, A., Rooshenas, P., Strauss, T., Abhishek, A., & Khan, T.R. (2023). Improved
Training of Physics-Informed Neural Networks Using Energy-Based Priors: a Study on
Electrical Impedance Tomography. International Conference on Learning Representations.

Study inverse design problems with “internal” data!
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Imaging Function

For z ∈ R2, define the function

I(z) :=
∫
S

∫
∂Ω

usc(x , d)Φ(x , z) ds(x) Φ∞(d , z) ds(d),

where Φ(x , z) and Φ∞(d , z) denote the Green’s function and its
scattering amplitude respectively.

With the Helmholtz-Kirchhoff Identity, Funk-Hecke Formula and Born
approximation, we can derive

I(z)− kπ

2

∫
D
J20 (k |y − z |) η(y) dy = 0.

A simple and nice connection between I(z) and η.

This equation will be used as a (simplified) model equation in training
our neural network with data I(z).
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Stable Imaging Function

We assume the noisy data uscδ satisfies

∥usc − uscδ ∥L2(∂Ω×S) ≤ δ∥usc∥L2(∂Ω×S).

Theorem 11

Let Iδ(z) the imaging function with noisy data uscδ . Then

|I(z)− Iδ(z)| ≤ Cδ, for all z ∈ R2,

where C is a positive constant which is independent of z and δ.
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Some numerical results

(a) Original Scatterer (b) Predicted (c) Least Square
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Review

We have developed an unsupervised, model-informed deep learning
algorithm to solve inverse scattering problems

Unsupervised =⇒ greater generalisability

Similar to the case of the algorithm for the inverse source problem,
the algorithm is computationally cheap

Again, the method is highly robust against noisy data, ensuring
stability and accuracy in practical applications.
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Thank you for listening!

Aravinth Krishnan (Kansas State University) March 20, 2025 44 / 44


	Direct Source Problem
	Inverse Source Problem & Numerical Methods
	A Model-Informed Neural Network Algorithm
	Extension to Inverse Scattering Problems

