Tropical Geometry Tropical Geometry

Aravinth Krishnan

January 3, 2023

A Brief Recap on Tropical Algebra

- ▶ Set of Tropical Numbers, $\mathbb{T} := \mathbb{R} \cup \{\infty\}$
- ightharpoonup Operations on $\mathbb T$
 - ▶ Tropical Addition: "x + y" := $min\{x, y\}$
 - ▶ Tropical Multiplication: " $x \cdot y$ " := x + y
- lacktriangle With our usual conventions, (∞) is our additive identity.
 - $\forall x \in \mathbb{T}, "x + (\infty)" = min\{x, \infty\} = x$, and
 - $\forall x \in \mathbb{T}, "x \cdot (\infty)" = x + (\infty) = (\infty)$
- So, we can see that $(\mathbb{T}, "+", "\cdot")$ satisfies all the field axioms except the existence of tropical additive inverse. So, $(\mathbb{T}, "+", "\cdot")$ forms a semi-field.
- Semi-rings vs semi-fields

Tropical Polynomials: 1 Dimensional Case

▶ A Tropical Polynomial $P(x) = "\sum_{i=0}^{d} a_i x^{i}"$ is viewed as

"
$$\sum_{i=0}^{d} a_i x^{i}$$
" = $min_{i=1}^{d} \{a_i + ix\}$

- ➤ So, a tropical polynomial is a convex piecewise affine function and each piece has as integer slope
- ▶ Roots of a tropical polynomial: All the points $x_0 \in \mathbb{T}$ for which the graph of P(x) has a corner (bends) at x_0 . This is equivalent to $P(x_0)$ being equal to the value of at least 2 of its monomials evaluated at x_0 .

▶ Consider the function $f = "0 + x" := min\{0, x\}$

Consider the equation

$$P(x) = 0 + x + (-1)x^{2} := min\{0, x, -1 + 2x\}$$

b) $P(x) = 0 + x + (-1)x^2$

► Consider the function $f = "0 + x^2"$

Tropical Polynomial in 2 variables

- ▶ A Tropical Polynomial in 2 variables is $P(x,y) = "\sum_{(i,j)\in A} a_{(i,j)} x^i y^j = \min_{(i,j)\in A} (a_{(i,j)} + ix + jy),$ where A is a finite subset of $(\mathbb{Z}_{\geq 0})^2$.
- ▶ Thus, a tropical polynomial in 2 dimensions is a convex piecewise affine function
- The roots of the tropical polynomial is the corner locus of this function. That is to say,

$$\tilde{V}(P) = \{(x_0, y_0) \in \mathbb{R}^2 : (i, j) \neq (k, l), P(x_0, y_0) = "a_{i,j} x_0^i y_0^j " \\
= "a_{k,l} x_0^k y_0^{l}" \}$$

▶ Said another way, a tropical curve C consists of all points $(x_0, y_0) \in \mathbb{T}^2$ for which the minimum of P(x, y) is obtained at least twice at (x_0, y_0)

- ► Consider the equation $f = "0 + x + y" := min\{0, x, y\}$
- ▶ We must find points $(x_0, y_0) \in \mathbb{R}^2$ that satisfy one of the following 3 conditions:
 - ► $x_0 = 0 \le y_0$
 - ▶ $y_0 = 0 \le x_0$
 - ► $x_0 = y_0 \le 0$
- ▶ Then, the set $\tilde{V}(P)$ is made of three standard half-lines:
 - ▶ $\{(0, y) \in \mathbb{R}^2 | y \ge 0\}$
 - $\{(x,0) \in \mathbb{R}^2 | x \ge 0\}$
 - $\{(x,x) \in \mathbb{R}^2 | x \le 0 \}$
- ▶ Then, the set $\tilde{V}(P)$ is a piecewise linear graph in \mathbb{R}^2 .

Example Continued

ightharpoonup we can visualise this in \mathbb{R}^3 .

- Consider the equation $f = "3 + 2x + 2y + 3xy + y^2 + x^2"$
- ightharpoonup we can visualise this in \mathbb{R}^3 .

Generalisation of Functions to N variables

► In order to write these functions in a more invariant way, we fix the following notation:

$$M=\mathbb{Z}^n,\ M_{\mathbb{R}}=\mathbb{Z}^n\otimes\mathbb{R},\ N=Hom_{\mathbb{Z}}(\mathbb{Z}^n,\mathbb{Z}),\ {
m and}\ N_{\mathbb{R}}=N\otimes\mathbb{R}$$

► Then, the following function

$$f: M_{\mathbb{R}} \to \mathbb{R}$$

$$z \mapsto f(z) = "\sum_{n \in S} a_n z^{n}"$$

can be reexpressed as:

$$f(z) := min\{a_n + < n, z > | n \in S\},$$

where S is a finite subset of N.

Example of Generalisation

- Consider the function $f = "1 + (0 \cdot x) + (0 \cdot x^2) + (2 \cdot x^3)"$
- ► Then,

$$M=\mathbb{Z},\ M_{\mathbb{R}}=\mathbb{Z}\otimes\mathbb{R}\cong\mathbb{R},\ N=Hom_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}),\ \mathrm{and}\ N_{\mathbb{R}}=N\otimes\mathbb{R}$$

- Note that N can be viewed as a 1-dimensional vector space spanned by the projection onto x-axis function, Pr_x
- ▶ We denote the evaluation of $n \in N$ on $m \in M$ by $\langle n, m \rangle$
- So, the function above can be viewed as:

$$f = min\{1, 0 + x, 0 + 2x, 2 + 3x\}$$

or

$$f = min\{1 + \langle 0Pr_x, x \rangle, 0 + \langle Pr_x, x \rangle, 0 + \langle 2Pr_x, x \rangle, 2 + \langle 3Pr_x, x \rangle\},$$

where S is the finite subset $\{0, Pr_x, 2Pr_x, 3Pr_x\}$ of $N = Hom_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z})$.

Polyhedron

- A polyhedron σ in $M_{\mathbb{R}}$ is a finite intersection of closed half-spaces (A hyperplane divides its affine space into 2. Any of these 2 parts in the affine plane is called a half space.). A face of a polyhedron is a subset given by the intersection of σ with a hyperplane H such that σ is contained in a half-space with boundary H.
- ▶ The boundary of $\delta(\sigma)$ of σ is the union of all proper faces of σ , and the interior $Int(\sigma)$ is $\sigma \setminus \delta(\sigma)$.
- The polyhedron σ is a lattice polyhedron if its an intersection of half-spaces defined over \mathbb{Q} and all the vertices lie in M.
- ► A polytope is a compact polyhedron.

Newton Polytope

- We now explain a simple way way to see what V(f), the tropical hyper surface, looks like
- ▶ Given $f = "\sum_{n \in S} a_n z^n"$, we define the newton polytope of S to be:

$$\Delta(S) = Conv(S) \subset N_{\mathbb{R}}$$

that is to say, the convex hull of S in $N_{\mathbb{R}}$

Newton Polytope Continued

ightharpoonup The coefficients a_n then define a function

$$\psi:\Delta_{\mathcal{S}}\to\mathbb{R}$$

as follows.

- ▶ We define the upper convex hull $\tilde{S} = \{(n, a_n) | n \in S\} \subset N_{\mathbb{R}} \times \mathbb{R}$
- Namely,

$$\tilde{\Delta}_{\mathcal{S}} = \{(\textit{n},\textit{a}) \in \textit{N}_{\mathbb{R}}\textit{xR} | \text{ there exists } (\textit{n},\textit{a}^{'}) \in \text{ Conv}(\tilde{\mathcal{S}}) \text{ with } \textit{a} \geq \textit{a}^{'}\}$$

▶ We then define

$$\psi(n) = \min\{a \in \mathbb{R} | (n, a) \in \tilde{\Delta}_S\}.$$

Example of Convex Hull

- Let's take a look at this function $f = "1 + (0 \cdot x) + (0 \cdot x^2) + (2 \cdot x^3)"$ again
- we have established S is the finite subset $\{0, Pr_x, 2Pr_x, 3Pr_x\}$ of $N = Hom_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z})$
- ▶ So, the set *S* is a set of discrete points in the 1 dimensional vector space
- Thus, the convex hull of this discrete set is

- Recall, we define the upper convex hull as $\tilde{S} = \{(n, a_n) | n \in S\} \subset N_{\mathbb{R}} \times \mathbb{R} \text{ and } \tilde{\Delta}_S = \{(n, a) \in N_{\mathbb{R}} \times R | \text{ there exists } (n, a') \in \mathsf{Conv}(\tilde{S}) \text{ with } a \geq a'\}$
- Since $S = \{0, 1, 2, 3\}$ and the corresponding coefficients of this points are $\{1, 0, 0, 2\}$, our set $\tilde{S} = \{(0, 1), (1, 0), (2, 0), (3, 2), \text{ which lives in } \mathbb{R}^2$
- ▶ Thus, our upper half convex plane, $\tilde{\Delta}_S$, looks like:

Polyhedral Decomposition

- ▶ A (lattice) polyhedral decomposition of a lattice polyhedron $\Delta \subset N_{\mathbb{R}}$ is a set \mathbb{P} of (lattice) polyhedra in $N_{\mathbb{R}}$ called cells such that:
 - $\Delta = \cup_{\sigma \in \mathbb{P}} \sigma$
 - ▶ If $\sigma \in \mathbb{P}$ and $\tau \subset \sigma$ is a face, then $\tau \in \mathbb{P}$
 - ▶ If $\sigma_1, \sigma_2 \in \mathbb{P}$, then $\sigma_1 \cap \sigma_2$ is a face of both σ_1 and σ_2 .
- ▶ For a polyhedral decomposition \mathbb{P} of Δ_S , denote by \mathbb{P}_{max} the subset of maximal cells of \mathbb{P} .
- ▶ To get a polyhedral decomposition of \mathbb{P} of Δ_S , we just take \mathbb{P} to be the set of images under the projection $N_{\mathbb{R}} \times \mathbb{R} \to N_{\mathbb{R}}$ of proper faces of $\tilde{\Delta}_S$. A \mathbb{P} of Δ_S obtained in this way from the graph of a convex piecewise linear function is called a regular decomposition, and these decompositions play an important role in the combinatorics of convex polyhedra.

Definition of Discrete Legendre Transform

The Discrete Legendre Transform of $(\Delta_S, \mathbb{P}, \psi)$ is the triple $(M_{\mathbb{R}}, \tilde{\mathbb{P}}, \tilde{\psi})$ where:

$$\tilde{\mathbb{P}} = \{\tilde{\tau} : \tau \in \mathbb{P}\}$$

with

$$ilde{ au} = \{ m \in M_{\mathbb{R}} | a \in \mathbb{R} \text{ such that } < -m, n > +a \leq \psi(n) \forall n \in \Delta_{\mathcal{S}}, \\ ext{with equality for } n \in au \},$$

and
$$ilde{\psi}(m) = max\{a | < -m, n > +a \leq \psi(n) orall \ n \in \Delta_{\mathcal{S}}.$$

Thank You for Your Attention!