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A Brief Recap on Tropical Algebra

▶ Set of Tropical Numbers, T := R ∪ {∞}
▶ Operations on T

▶ Tropical Addition: ”x + y” := min{x , y}
▶ Tropical Multiplication: ”x · y” := x + y

▶ With our usual conventions, (∞) is our additive identity.
▶ ∀x ∈ T, ”x + (∞)” = min{x ,∞} = x , and
▶ ∀x ∈ T, ”x · (∞)” = x + (∞) = (∞)

▶ So, we can see that (T, ”+ ”, ” · ”) satisfies all the field axioms
except the existence of tropical additive inverse. So,
(T, ” + ”, ” · ”) forms a semi-field.

▶ Semi-rings vs semi-fields
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Tropical Polynomials: 1 Dimensional Case

▶ A Tropical Polynomial P(x) = ”
∑d

i=0 aix
i” is viewed as

”
d∑

i=0

aix
i” = mindi=1{ai + ix}

▶ So, a tropical polynomial is a convex piecewise affine function
and each piece has as integer slope

▶ Roots of a tropical polynomial: All the points x0 ∈ T for which
the graph of P(x) has a corner (bends) at x0. This is
equivalent to P(x0) being equal to the value of at least 2 of its
monomials evaluated at x0.
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Example 1
▶ Consider the function f = ”0 + x” := min{0, x}
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Example 2
▶ Consider the equation

P(x) = ”0 + x + (−1)x2” := min{0, x ,−1 + 2x}

▶ Max vs Min??
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Example 3
▶ Consider the function f = ”0 + x2”
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Tropical Polynomial in 2 variables

▶ A Tropical Polynomial in 2 variables is
P(x , y) = ”

∑
(i ,j)∈A a(i ,j)x

iy j” = min(i ,j)∈A(a(i ,j) + ix + jy),
where A is a finite subset of (Z≥0)

2.
▶ Thus, a tropical polynomial in 2 dimensions is a convex

piecewise affine function
▶ The roots of the tropical polynomial is the corner locus of this

function. That is to say,

Ṽ (P) = {(x0, y0) ∈ R2 : (i , j) ̸= (k , l),P(x0, y0) = ”ai ,jx
i
0y

j
0”

= ”ak,lx
k
0 y

l
0”}

▶ Said another way, a tropical curve C consists of all points
(x0, y0) ∈ T2 for which the minimum of P(x , y) is obtained at
least twice at (x0, y0)
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Example 1

▶ Consider the equation f = ”0 + x + y” := min{0, x , y}
▶ We must find points (x0, y0) ∈ R2 that satisfy one of the

following 3 conditions:
▶ x0 = 0 ≤ y0
▶ y0 = 0 ≤ x0
▶ x0 = y0 ≤ 0

▶ Then, the set Ṽ (P) is made of three standard half-lines:
▶ {(0, y) ∈ R2|y ≥ 0}
▶ {(x , 0) ∈ R2|x ≥ 0}
▶ {(x , x) ∈ R2|x ≤ 0}

▶ Then, the set Ṽ (P) is a piecewise linear graph in R2.
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Example Continued
▶ we can visualise this in R3.
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Example 2

▶ Consider the equation f = ”3 + 2x + 2y + 3xy + y2 + x2”

▶ we can visualise this in R3.
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Generalisation of Functions to N variables

▶ In order to write these functions in a more invariant way, we
fix the following notation:

M = Zn, MR = Zn ⊗ R, N = HomZ(Zn,Z), and NR = N ⊗ R

▶ Then, the following function

f :MR → R

z 7→ f (z) = ”
∑
n∈S

anz
n”

can be reexpressed as:

f (z) := min{an+ < n, z > |n ∈ S},

where S is a finite subset of N.
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Example of Generalisation
▶ Consider the function f = ”1 + (0 · x) + (0 · x2) + (2 · x3)”

▶ Then,

M = Z, MR = Z⊗ R ∼= R, N = HomZ(Z,Z), and NR = N ⊗ R

▶ Note that N can be viewed as a 1-dimensional vector space
spanned by the projection onto x-axis function, Prx

▶ We denote the evaluation of n ∈ N on m ∈ M by <n,m>
▶ So, the function above can be viewed as:

f = min{1, 0 + x , 0 + 2x , 2 + 3x}

or

f = min{1+ < 0Prx , x >, 0+ < Prx , x >, 0+ < 2Prx , x >,
2+ < 3Prx , x >},

where S is the finite subset {0,Prx , 2Prx , 3Prx} of
N = HomZ(Z,Z).
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Polyhedron

▶ A polyhedron σ in MR is a finite intersection of closed
half-spaces (A hyperplane divides its affine space into 2. Any
of these 2 parts in the affine plane is called a half space.). A
face of a polyhedron is a subset given by the intersection of σ
with a hyperplane H such that σ is contained in a half-space
with boundary H.

▶ The boundary of δ(σ) of σ is the union of all proper faces of
σ, and the interior Int(σ) is σ\δ(σ).

▶ The polyhedron σ is a lattice polyhedron if its an intersection
of half-spaces defined over Q and all the vertices lie in M.

▶ A polytope is a compact polyhedron.
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Newton Polytope

▶ We now explain a simple way way to see what V (f ), the
tropical hyper surface, looks like

▶ Given f = ”
∑

n∈S anz
n”, we define the newton polytope of S

to be:

∆(S) = Conv(S) ⊂ NR

that is to say, the convex hull of S in NR
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Newton Polytope Continued

▶ The coefficients an then define a function

ψ : ∆S → R

as follows.
▶ We define the upper convex hull S̃ = {(n, an)|n ∈ S} ⊂ NRxR
▶ Namely,

∆̃S = {(n, a) ∈ NRxR| there exists (n, a
′
) ∈ Conv(S̃) with a ≥ a

′}

▶ We then define

ψ(n) = min{a ∈ R|(n, a) ∈ ∆̃S}.
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Example of Convex Hull

▶ Let’s take a look at this function
f = ”1 + (0 · x) + (0 · x2) + (2 · x3)” again

▶ we have established S is the finite subset {0,Prx , 2Prx , 3Prx}
of N = HomZ(Z,Z)

▶ So, the set S is a set of discrete points in the 1 dimensional
vector space

▶ Thus, the convex hull of this discrete set is
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Example

▶ Recall, we define the upper convex hull as
S̃ = {(n, an)|n ∈ S} ⊂ NRxR and
∆̃S = {(n, a) ∈ NRxR| there exists (n, a

′
) ∈ Conv(S̃) with a ≥

a
′}

▶ Since S = {0, 1, 2, 3} and the corresponding coefficients of this
points are {1, 0, 0, 2}, our set S̃ = {(0, 1), (1, 0), (2, 0), (3, 2),
which lives in R2

▶ Thus, our upper half convex plane, ∆̃S , looks like:
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Polyhedral Decomposition

▶ A (lattice) polyhedral decomposition of a lattice polyhedron
∆ ⊂ NR is a set P of (lattice) polyhedra in NR called cells
such that:
▶ ∆ = ∪σ∈Pσ
▶ If σ ∈ P and τ ⊂ σ is a face, then τ ∈ P
▶ If σ1, σ2 ∈ P, then σ1 ∩ σ2 is a face of both σ1 and σ2.

▶ For a polyhedral decomposition P of ∆S , denote by Pmax the
subset of maximal cells of P.

▶ To get a polyhedral decomposition of P of ∆S , we just take P
to be the set of images under the projection NRxR → NR of
proper faces of ∆̃S . A P of ∆S obtained in this way from the
graph of a convex piecewise linear function is called a regular
decomposition, and these decompositions play an important
role in the combinatorics of convex polyhedra.
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Definition of Discrete Legendre Transform

▶ The Discrete Legendre Transform of (∆S ,P, ψ) is the triple
(MR, P̃, ψ̃) where:

P̃ = {τ̃ : τ ∈ P}

with

τ̃ = {m ∈ MR|a ∈ R such that < −m, n > +a ≤ ψ(n)∀n ∈ ∆S ,

with equality for n ∈ τ},

and
ψ̃(m) = max{a| < −m, n > +a ≤ ψ(n)∀ n ∈ ∆S .
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Thank You for Your Attention!


