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A Brief Recap on Tropical Algebra

» Set of Tropical Numbers, T := R U {oo}
» Operations on T
> Tropical Addition: "x + y" := min{x,y}
» Tropical Multiplication: "x-y" :=x+vy
» With our usual conventions, (co) is our additive identity.
> ¥x eT,"x+ (c0)" = min{x,00} = x, and
> VxeT,"x - (00)" =x+ (00) = (0)

» So, we can see that (T,” +","” -") satisfies all the field axioms
except the existence of tropical additive inverse. So,
(T,” +"," -") forms a semi-field.

» Semi-rings vs semi-fields
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Tropical Polynomials: 1 Dimensional Case

» A Tropical Polynomial P(x) =" 27:0 a;x" is viewed as

d
; E aix™ = minf_;{a; + ix}
i=0

» So, a tropical polynomial is a convex piecewise affine function
and each piece has as integer slope

» Roots of a tropical polynomial: All the points xq € T for which
the graph of P(x) has a corner (bends) at xg. This is
equivalent to P(xp) being equal to the value of at least 2 of its
monomials evaluated at xp.
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Example 1

» Consider the function f ="0+ x" := min{0, x}

(o)
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Example 2

» Consider the equation

P(x) ="0+ x + (—=1)x*" := min{0, x, =1 + 2x}

(=00, —00) 0 1
b) P(z) = “0+z + (~1)a?”

» Max vs Min??

4\ ko) La=—“'2“‘ Y=
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Example 3

» Consider the function f = "0 + x2"

A

N

Ly=Dx

(6,0)
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Tropical Polynomial in 2 variables

> A Tropical Polynomial in 2 variables is
Plx,y) =" Xipeadinx'y" = mingpea(a ) + ix +Jjy),
where A is a finite subset of (Z>0)2.

» Thus, a tropical polynomial in 2 dimensions is a convex
piecewise affine function

» The roots of the tropical polynomial is the corner locus of this
function. That is to say,

V(P) = {(x0,y0) € R?: (i,j) # (k, 1), P(x0, 0) =" ai ¥4
="akxo¥0" }

> Said another way, a tropical curve C consists of all points
(x0, o) € T2 for which the minimum of P(x,y) is obtained at
least twice at (xo, y0)
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Example 1

» Consider the equation f ="0+ x + y" := min{0, x, y}
» We must find points (xg, o) € R? that satisfy one of the
following 3 conditions:
> x=0<y
> %=0<x
> X0 =y <0
» Then, the set V(P) is made of three standard half-lines:
> {(0.y) € R?|y > 0}
> {(x,0) € R?|x > 0}
> {(x,x) € R?x <0}
> Then, the set V(P) is a piecewise linear graph in R2.
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Example Continued

» we can visualise this in R3

2

Co,0)

Yosa
x;séo

Do
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Example 2

» Consider the equation f = "3 4 2x + 2y + 3xy + y? + x*"
> we can visualise this in R3.

b) “3+ 2z + 2y + 3xy + y? + ¥

Do
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Generalisation of Functions to N variables

» In order to write these functions in a more invariant way, we
fix the following notation:

M=1Z" Mg=7Z"®R, N=Homyz(Z",Z), and Nz = N ® R
» Then, the following function

f ZMR — R
z— f(z)=" Zanz””

neS

can be reexpressed as:
f(z) == min{ap,+ < n,z > |n € S},
where S is a finite subset of M.
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Example of Generalisation

>
>

Consider the function f ="1+ (0 x) + (0-x?) + (2- x3)"
Then,

M=7, Mg =Z3R=R, N=Homz(Z,Z), and Ng = N ® R

Note that N can be viewed as a 1-dimensional vector space
spanned by the projection onto x-axis function, Pry

We denote the evaluation of n€ N on m € M by <n,m>
So, the function above can be viewed as:

f =min{1,0 + x,0 + 2x,2 + 3x}
or

f = min{1+ < OPry,x >,0+ < Pry,x >,0+ < 2Pry, x >,
2+ < 3Pr,x >},

where S is the finite subset {0, Pry, 2Pry, 3Pry} of
N = Homy(Z, 7).
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Polyhedron

» A polyhedron o in Mg is a finite intersection of closed
half-spaces (A hyperplane divides its affine space into 2. Any
of these 2 parts in the affine plane is called a half space.). A
face of a polyhedron is a subset given by the intersection of o
with a hyperplane H such that o is contained in a half-space
with boundary H.

» The boundary of §(¢) of o is the union of all proper faces of
o, and the interior Int(c) is o\d(o).

» The polyhedron o is a lattice polyhedron if its an intersection
of half-spaces defined over Q and all the vertices lie in M.

> A polytope is a compact polyhedron.
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Newton Polytope

» We now explain a simple way way to see what V/(f), the
tropical hyper surface, looks like

> Given f ="
to be:

nes @anz™", we define the newton polytope of S

A(S) = Conv(S) C Ng

that is to say, the convex hull of S in Ny
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Newton Polytope Continued

» The coefficients a, then define a function
V:As — R

as follows.
> We define the upper convex hull § = {(n, a,)|n € S} ¢ NgxR
» Namely,

As = {(n,a) € NgxR)| there exists (n,a ) € Conv(S) with a > a'}
» We then define

¥(n) = min{a € R|(n,a) € As}.
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Example of Convex Hull

> Let's take a look at this function
f="1+(0-x)+(0-x?)+ (2 x3)" again

» we have established S is the finite subset {0, Pry, 2Pry, 3Pr,}
of N = Homz(Z,Z)

P So, the set S is a set of discrete points in the 1 dimensional
vector space

» Thus, the convex hull of this discrete set is

. ® »
0 1 2 ST
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Example

> Igecall, we define the upper convex hull as
5 ={(n,an)|n € S} C NrxR and )
As = {(n, a) € NgxR| there exists (n,a') € Conv(5) with a >

/

at

» Since S ={0,1,2,3} and the c~orresponding coefficients of this
points are {1,0,0,2}, our set S = {(0,1),(1,0),(2,0),(3,2),
which lives in R?

» Thus, our upper half convex plane, As, looks like:

(3.2)

©.1)

(1,0) (2,0)
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Polyhedral Decomposition

» A (lattice) polyhedral decomposition of a lattice polyhedron
A C Ny is a set P of (lattice) polyhedra in N called cells
such that:

> A= UUEPU
» IfcoePand 7 C ois a face, then T € P
» If 01,00 € P, then o1 N oy is a face of both o7 and o5.
» For a polyhedral decomposition P of Ag, denote by Pp,.x the
subset of maximal cells of P.

> To get a polyhedral decomposition of P of Ag, we just take P
to be the set of images under the projection NgxR — Ng of
proper faces of As. A P of Ag obtained in this way from the
graph of a convex piecewise linear function is called a regular
decomposition, and these decompositions play an important
role in the combinatorics of convex polyhedra.
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Definition of Discrete Legendre Transform

> The Discrete Legendre Transform of (Ag, P, ) is the triple
(Mg, P, 1)) where:

P={7:7eP}
with

7={m € Mgl|a € R such that < —m,n> +a <(n)Vn € As,
with equality for n € 7},

and
P(m) = max{al < —m,n > +a <(n)¥ n € As.
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Thank You for Your Attention!



