Measured Foliations

Aravinth Krishnan

Apr 2022

In this set of notes, I will introduce and prove Thurston's Construction. Before doing that, I will briefly recap measured foliations and their construction.

1 Measured Singular Foliation on the Torus

We will first focus our attention on the simple case of the torus before providing the general definition of a measured foliation. I will also elaborate on what it means for a linear map of the torus to stretch the torus along one foliation and shrink along the other.

Let l be any line passing through the origin in \mathbb{R}^2 . The line l determines a foliation \tilde{F}_l of \mathbb{R}^2 , which consists of all lines in \mathbb{R}^2 parallel to l. Translations of \mathbb{R}^2 takes lines to lines, and so any translation preserves \tilde{F}_l , meaning that leaves are sent to leaves.

Since all deck transformations for the standard covering $\mathbb{R}^2 \to T^2$ are translations, the foliation \tilde{F}_l descends to a foliation F_l of T^2 .

There is an additional structure we will equip the foliations \widetilde{F}_l with. Let $v_l : \mathbb{R}^2 \to \mathbb{R}$ be the function that records distance from any point in \mathbb{R}^2 to l. In this picture, the arc from (a,b) to (c,d) denotes a transverse arc in \mathbb{R}^2 :

 v_l will allow us to calculate the difference in height between different points in \mathbb{R}^2 with respect to the line l.

This in turn will let us define a measure in \mathbb{R}^2 .

The measure μ with respect to the foliation is a function that associates each smooth

arcs transverse to foliation F to a real number.

$$\mu: \{ \text{Smooth Arcs transverse to foliation } \widetilde{F}_l \} \mapsto \mathbb{R}$$

Integration against the 1-form dv_l provides a transverse measure on \tilde{F}_l . This means that any smooth arc α transverse to the leaves of \tilde{F}_l can be assigned a length defined by $\mu(\alpha) = \int_{\alpha} dv_l$. The quantity $\mu(\alpha)$ is the total variation of α in the direction perpendicular to l.

Let's break down what this means. Let $P = \{x_0, x_1, ..., x_n\}$ denote the partition of the smooth arc α transverse to foliation F.

The measure of a smooth arc α transverse to F is defined as shown below:

$$\mu(\alpha) = \sup_{P} \sum_{i=0}^{n-1} |v_l(x_{i+1}) - v_l(x_i)|,$$

where P is the collection of all possible partitions of α .

So, intuitively, we can see that each smooth arc transverse to the foliation is given a real number which measure the total oscillation from the start point to the end point.

Now, we shall describe some properties of the measure. Firstly, note that $\mu(\alpha)$ is invariant under isotopies of α that move each point α within the leaf of \tilde{F}_l in which it is contained.

The reason for this is that if a point only shifts within the leave it is contained in, there is no change in height with respect to the base line l (Note that each leaf in the foliation is parallel to l). Since μ can be interpreted as the integration against the 1-form dv_l , this tells us that the measure is indeed invariant under isotopies of α that move each point α within the leaf of \tilde{F}_l in which it is contained.

Next, The 1-form dv_l is preserved by translations. This is due to similar reasoning above. As the entire plane is shifted by the translation, at if a point only shifts within the leave it is contained in, there is no change in height with respect to the base line l. So, since μ can be interpreted as the integration against the 1-form dv_l , the 1-form dv_l is preserved. So, the 1-form dv_l descends to a 1-form w_l on T^2 and induces a transverse measure on the foliation F_l . The structure of a foliation on T^2 together with a transverse measure is called a transverse measured foliation on T^2 .

1.1 Worked out examples of foliation of $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

The characteristic polynomial of $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ is:

$$\lambda^2 - tr(A)\lambda + det(A) = 0.$$

Since
$$tr(A)=2+1=3$$
 and $A\in SL(2,\mathbb{Z})=\{\begin{pmatrix} a&b\\c&d\end{pmatrix}:ad-bc=1\},$ we have:
$$\lambda^2-3\lambda+1=0.$$

Thus, we have the following eigenvalues:

$$\lambda_1 = \frac{-\sqrt{5} + 1}{2}$$
$$\lambda_2 = \frac{\sqrt{5} + 1}{2}.$$

The corresponding eigenspace of λ_1 and λ_2 , denoted as E_{λ_1} and E_{λ_2} respectively, are:

$$E_{\lambda_1} = \left\{ m \begin{bmatrix} \frac{-\sqrt{5}+1}{2} \\ 1 \end{bmatrix} : m \in \mathbb{R}^2 \right\}$$

$$E_{\lambda_2} = \left\{ n \begin{bmatrix} \frac{\sqrt{5}+1}{2} \\ 1 \end{bmatrix} : n \in \mathbb{R}^2 \right\}$$

This results in the foliations on T^2 :

1.2 Measured Singular Foliations on $\Sigma_{q,n}$

On a higher genus surface, it is not clear what it means for a homeomorphism to stretch in the direction of a single vector. To counter this, we can construct measured foliation on a higher genus surface, which we will then map it to \mathbb{R}^2 using smooth charts. This will allow us to embed the foliations in \mathbb{R}^2 , where we can see how a homeomorphism to stretch the surface in the direction of that foliation.

A singular foliation F on a closed surface $\Sigma_{g,n}$ is a decomposition of $\Sigma_{g,n}$ into a disjoint union of subsets of $\Sigma_{g,n}$, called the leaves of F, and a finite set of points of $\Sigma_{g,n}$, called singular points of F, such that the following 2 conditions hold:

- A. For each non-singular point $p \in \Sigma_{g,n}$, there is a smooth chart from a neighborhood of p to R^2 that takes leaves to horizontal line segments. The transition maps between any 2 of these charts are smooth maps of the form $(x, y) \mapsto (f(x, y), g(y))$. In other words, the transition maps take horizontal lines to horizontal lines.
- B. For singular points $p \in \Sigma_{g,n}$, there is a smooth chart from a neighborhood of p to \mathbb{R}^2 that takes leaves to level sets of a k-pronged saddle, $k \geq 3$.

Just like how we gave foliations on the torus a measure, we want the foliations on higher genus surfaces to be equipped with the transverse measure too. Which is to say a length function defined on arcs transverse to the foliation. However, first, we need to define leaf-preserving isotopies first.

Let F be a foliation on a surface $\Sigma_{g,n}$. A smooth arc α in $\Sigma_{g,n}$ is transverse to F if α misses the singular points of F and is transverse to each leaf of F at each of its interior point. Let $\alpha, \beta : \mathbb{I} \to \Sigma_{g,n}$ be smooth arcs transverse to F. A leaf preserving isotopy from α to β is a map $H : \mathbb{I} \times \mathbb{I} \to \Sigma_{g,n}$ such that:

- $H(\mathbb{I} \times \{0\} = \alpha)$ and $H(\mathbb{I} \times \{1\} = \beta)$
- $H(\mathbb{I} \times \{t\})$ is transverse to F for each $t \in [0, 1]$.
- $H(\{0\} \times \mathbb{I} \text{ and } H(\{1\} \times \mathbb{I} \text{ are each contained in a single leaf.}$

A transverse measure μ on a foliation F is a map that assigns a positive real number to each smooth arc transverse to F, so that μ is invariant under leaf-preserving isotopy and μ is regular with respect to Lebesgue measure. This means that each point of $\Sigma_{g,n}$ has a neighborhood U and a smooth chart $U \to \mathbb{R}^2$ so that the measure μ is induced by |dy| on \mathbb{R}^2 .

Thus, a measured foliation (F, μ) on a surface S is a foliation F of S equipped with a transverse measure μ .

Punctures and Boundary At a puncture, a foliation takes the form of a regular point or a k-pronged singularity with $k \geq 3$, as in the case of foliations on closed surfaces. At a puncture, however, we can allow a one prong singularity.

A measured foliation on a compact surface S with nonempty boundary is defined similarly to the case when S is closed. There are four different pictures in the neighborhood of a point in the boundary of S depending on whether or not the point is singular and whether or not the leaves are parallel to the boundary or transverse to the boundary.

