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Abstract

In this paper, I will first introduce key definitions that will be used later on. Next, I will intro-
duce 2 definitions of projective representations and prove their equivalence and then, draw the
link to "ordinary" representations. Lastly, we will look at an example of projective representations
of K4.

1 Introduction

Definition 1.1 (Transversals) Let G and H be arbitrary groups. If K ≤ G, then a (right) transversal of K
in G (or a complete set of right coset representatives) is a subset T of G consisting of one element from each
right coset of K in G. Also, if π : G → H is surjective, then a lifting of x ∈ H is an element l(x) ∈ G with
π(l(x)) = x. In this case, the function l; H → G is also called a right transversal.

Note that if T is the right transversal, then G is the disjoint union G = ∪t∈TK + t. Thus, every
element g ∈ G has an unique factorisation g = k + t for k ∈ K and t ∈ T.

Definition 1.2 (The Factor Set) If π : G → Q is a surjective homomorphism with kernel K, and if l :
Q → G is the transversal with l(1) = 0, then the function f : Q x Q → K, defined as (x, y) 7→ l(x) +
l(y)− l(xy), is called a factor set. (The factor set is dependent on the transversal l.)

Definition 1.3 (Inertia group of θ in G) Let H ⊴ G and let θ ∈ Irr(H), where Irr(H) is the set of all
irreducible C-character of H. Then,

IG(θ) = {g ∈ G : θg = θ}

is the inertia group of θ in G. θg is the character from H to C defined as:

θg : h 7→ θ(ghg−1).

Definition 1.4 (Invariant character of G) If θ ∈ Irr(G) and G = IG(θ), then θ is said to be invariant in
G.

Definition 1.5 (Projective Representation) A Projective Representation of a group Q is a homomorphism

τ : Q → PGL(n, C) =
GL(n, C)

Z(n, C)
.

where Z(n, C) denotes the center of the group GL(n, C), Z(GL(n, C)).
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Note that Z(n, C) = {λIn : λ ∈ C∗}, where In is the identity matrix. This is because if a matrix
A is in the center, then it must commute with every invertible matrix. In particular it must commute
with elementary matrices which corresponds to the operations on row or columns, depending on
the multiplication is made on the left or on the right. In particular if the elementary matrix is B,
denoting the multiplication by a ∈ F of the ith row, then you have AB = BA; hence multiplying the
ith row by a ∈ F is equivalent to multiplying the ith column by the same scalar. Hence, a matrix in
the center must be diagonal. Viceversa, as you already noticed, a diagonal matrix is in the center.

Furthermore, {λI : λ ∈ C∗} ∼= C∗. Thus, we can rewrite the definition of projective representa-
tion as:

τ : Q → PGL(n, C) =
GL(n, C)

C∗ .

There is an equivalent definition of projective representations and we shall prove it as a propo-
sition.

Theorem 1.1 Let P be the projective representation of G on a complex vector space of dimension n. The,
there exist the following maps:

P
′

: G → GLn(C)

ρ : GxG → C∗

such that

P
′
(g)P

′
(h) = ρ(g, h)P

′
(gh), ∀g, h ∈ G.

Conversely, if there are maps P
′

: G → GLn(C) and ρ : GxG → C∗ satistfying P
′
(g)P

′
(h) =

ρ(g, h)P
′
(gh), ∀g, h ∈ G, then there exist an unique homomorphism P : G → PGLn(C) such that

P(g) = πP
′
(g), ∀g ∈ G.

proof 1 Let X be the transversal of Z(GLn(C)) in GLn(C) (ie X ⊂ GLn(C)), and define P
′

: G →
GLn(C) by setting ∀g ∈ G, P

′
(g) as the unique element of X such that πP

′
(g) = P(g), that is to say

P
′
(g) = π−1P(g).

Now, let g, h ∈ G. Then, we have P(gh) = P(g)P(h) as P is a projective representation. Using the com-
mutative diagram above, we have P

′
(gh)C∗ = P

′
(g)P

′
(h)C∗, which implies there is a unique ρ(g, h) ∈ C∗

such that P
′
(gh) = P

′
(g)P

′
(h).

Conversely, if we have the maps P
′

: G → GLn(C) and ρ : GxG → C∗ satistfying P
′
(g)P

′
(h) =
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ρ(g, h)P
′
(gh), ∀g, h ∈ G, we define the projective representation P : G → PGLn(C) as P = πP

′
. Then,

P(gh) = π(P
′
(gh))

= π(ρ(g, h)−1P
′
(g)P

′
(h))

= π(P
′
(g)P

′
(h))

= π(P
′
(g))π(P

′
(h))

= P(g)P(h), ∀g, h ∈ G.

This is possible as π is the canonical standard surjective homomorphism from GLn(C) → PGLn(C). There-
fore, P is an group homomorphism from G to PGLn(C), ie a projective representation.

The theorem gives a new way to see a projective representation which is equivalent. If we have
two maps P

′
: G → GLn(C) and ρ : GxG → C∗ satisfying P

′
(g)P

′
(h) = ρ(g, h)P

′
(gh), ∀g, h ∈ G, we

will call P
′

a projective representation.

The function ρ : GxG → C∗ is the factor set of π : GLn(C) → PGLn(C), as the definition aboved
is satisfied. The Ker(π) = {λI : λ ∈ C∗} ∼= C∗ . Then, l : PGLn(C) → GLn(C) is defined such
as each coset in the quotient group is mapped to it’s representative, which belongs to the set of
GLn(C). The identity coset will be the identity matrix I as it’s representative. Thus, l(IC∗) = I.

Projective Representations arise in a natural way when we try to answer the following question:
Given an irreducible representation ϕ of a normal subgroup H ⊴ Q, can the representation of H be
extended to a representation of Q? We will show how right now.

Theorem 1.2 Let N ⊴ G and suppose η is an irreducible C-representation of N whose character is invariant
in G. Then, there exist a projective C-representation χ of G such that ∀n ∈ N and g ∈ G, we have

• χ(n) = η(n)

• χ(ng) = χ(n)χ(g)

• χ(gn) = χ(g)χ(n).

Furthermore, if χ0 is another projective representation satisfying the 3 conditions above, then χ0(g) =
χ(g)µ(g) for some function µ : G → C∗, which is constant on cosets of N.

proof 2 For g ∈ G and n ∈ N, we define a new representation as follows:

ηg(n) = η(gng−1).

This map is well-defined as N is a normal subgroup of G. Furthermore, as η affords a G-invariant character,
we conclude that η and ηg are similar representations of N.

Now, choose a transversal T for N in G. Take 1 ∈ T. For each t ∈ T, choose a nonsingular matrix Pt
such that PtηP−1

t = ηt. Take P1 = In. Since every element of G is uniquely of the form nt and t ∈ T, we can
define χ on G by χ(g) = χ(nt) = η(n)Pt.

3



The first 2 properties are immediate and the last one follows since

χ(g)χ(m) = χ(nt)χ(m)

= η(n)Ptη(m)

= η(ntmt−1)Pt

= χ(ntmt−1t)
= χ(ntm), ∀g ∈ G, m ∈ N

Note that the 3 properties yield:

χ(g)η(n) = χ(gn)

= χ(gng−1g)

= η(gng−1)χ(g)

Thus, we have χ(g)η(n)χ(g)−1 = η(gng−1), ∀g ∈ G and n ∈ N.

If A is any non-singular matrix such that Aη(n)A−1 = η(gng−1), ∀n ∈ N, then A−1χ(g) commutes
with all η(n) for n ∈ N and thus A−1χ(g) is a scalar matrix by Schur’s Lemma.

If χ0 also satisfies the 3 conditions above, we may take A = χ0(g) and conclude that χ0(g) = χ(g)µ(g)
for some µ(g) ∈ C∗.

Also, χ(g)χ(h)η(n)χ(h)−1χ(g)−1 = χ(g)η(hnh−1)χ(g)−1 = η(ghnh−1g−1). Comparing this with
χ(gh)η(n)χ(gh)−1 = η(ghng−1g−1) yields χ(g)χ(h) = χ(gh)α(g, h) for some α(g, h) ∈ C∗. Thus, χ is
a projective representation.

All that remains to check now is that µ is constant on cosets of N. We have

χ(n)χ(g)µ(g) = χ0(n)χ0(g)
= χ0(ng)
= χ(ng)µ(ng).

Since χ(n)χ(g) = χ(ng) is non-singular, the result follows.

Now, lets look an example of projective representation.
Let K4 denote the klein 4 group. The klein 4 group is defined as K4 = {1, a, b, ab}, with the

mulitplication table as below:

With the function ϕ : K4 → GL2(C) defined as:
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1 7→
(

1 0
0 1

)
, a 7→

(
1 0
0 −1

)
, b 7→

(
−1 0
0 1

)
, ab 7→

(
−1 0
0 −1

)
. Then, we have the following multi-

plication table:

With the function λ : K4 → GL2(C) defined as:

1 7→
(

1 0
0 1

)
, a 7→

(
0 −1
1 0

)
, b 7→

(
1 0
0 −1

)
, ab 7→

(
0 1
1 0

)
.

Then, we have the following multiplication table:

By comparing the table, the factor set, f (x, y) : V4xV4 → C∗: is defined as −1 if (x, y) =
(a, a), (a, ab), (b, a) and (b, ab) and 1 otherwise.
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