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1 Abstract and Strategy of Proof
In this set of notes, we will prove the following statement:

Theorem 1.1. There is a canonical equivalence of categories:

2TQFTK ∼= cFAK.

To prove the statement above, we will break down the categories on the left hand side,
2TQFTK and the right hand side, cFAK. We will define the category of nCob and
define the n-dimensional TQFT as a symmetric monodial functor from the category of
n cobordisms to the category of K-vector spaces, VectK. Then, we will go through the
concrete example of 2Cob, and give a presentation of 2Cob in terms of generators and
relations. Given the category of 2 cobordisms, 2Cob, and the category of K-vector spaces,
VectK, we will see that the functors between the categories, that is the 2-dimensional
TQFT, also form a category, the arrows between the objects (2-dimensional TQFT),
being monodial natural transformations.
On tangent, we will introduce the category of commutative Frobenius Algebras over K,
cFAK, with the morphisms being Frobenius Algebra homomorphisms. Then, we build
a 1 − 1 correspondence between the 2-dimensional TQFTs and commutative Frobenius
Algebras, which is possible as we are given a presentation of 2-dimensional TQFTs in
terms of generators and relations.
But before we start everything off, we will kick start with the definition of monodial
categories, symmetric monodial categories and monodial functor categories as this is a
common theme that appears across both sides of the story.

2 Everything Monodial
The important thing to note for this to make sense is that we have the notion of cartesian
product of categories. For pair of categories C and D, there is a category C x D defined
as follows: its objects are pairs (X, Y ) such that X is an object in C and Y is an object
in D. The set of arrows from (X, Y ) to (X ′

, Y
′) is the cartesian product of C(X,X ′) x

D(Y, Y ′). The empty product category (product of zero factors) is denoted as 1. It is
the category with only a single object, and only a single arrow (the identity arrow of the
object).

Definition 2.1 (Monodial Category). A (strict) monodial category is a category V to-
gether with two functors:

µ : VxV→ V, η : 1→ V
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satisfying the associativity axiom and the neutral object axiom. Precisely, we require that
these three diagrams commute:

The symbol idV stands for the indentity functor V→ V, and the diagonal functors with-
out labels are the projections, which are canonical identifications.

We want to emphasis that µ and η are functors, meaning they operate on both objects
and arrows:

VxV _−→ µV

(X, Y ) 7→ X□Y

(f, g) 7→ f□g.

So, to each pair of objects, X, Y , a new object X□Y is associated and to each pair of
arrows, f : X → X

′ , g : Y → Y
′ , a new arrow f□g : X□Y → X

′
□Y

′ . The fact that □
is a functor means that compositions and identity arrows are respected. In detail, given
compositions f : X → X

′ , f ′ : X ′ → X
′′ , g : Y → Y

′ , g′ : Y ′ → Y
′′ , then we have:

ff
′
□gg

′ = (f□g)(f ′
□g

′).

This is the equality of arrows X□Y → X
′′
□Y

′′ . Concerning the identity arrows: given
idX : X → X, and idY : Y → Y , we have:

idX□idy = idX□Y .

Let I denote the object which is the image of η : 1 → V. Then, the statement of the 2
triangular diagrams can be formulated as follows:

I□X = X = X□I, idI□f = f = f□idI ,

for every object X, and for every arrow f .

We refer to a monodial category by specifying the triple (V,□, I).



2. EVERYTHING MONODIAL 4

Definition 2.2 (Monodial Functor). A (strict) monodial functor between two (strict)
monodial categories (V,□, I) and (V′

,□
′
, I

′) is a functor F : V → V′ that commutes
with all the structure. Precisely, these 2 diagrams are required to commute:

So, in terms of objects, we have :

(XF )□′(Y F ) = (X□Y )F, and IF = I
′
,

and in terms of arrows, we have

(fF )□′(gF ) = (f□g)F.

The composition of two monodial functors is again monodial, and that identity functors
are monodial. So, all together, there is a category denoted MonCat whose objects are
the monodial category and the arrows are the functors. Some examples of monodial cat-
egory that we will see are (VectK,⊗,K), and (2Cob,⊔, ∅).

Definition 2.3 (Symmetric Monodial Category). A (strict) monodial category (V,□, I),
is called a symmetric monodial category if for each pair of objects X, Y , there is given a
twist map:

τX,Y : X□Y → Y□X,

subject to the following 3 axioms:

• The maps are natural

• For every triple of objects X, Y, Z, these 2 diagrams commute:
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• we have τX,Y τY,X = idX□Y .

Definition 2.4 (Monodial Natural Transformations). Let (V,□, I) and (V′
,□

′
, I

′) be
two monodial categories, and let

G,F : V→ V′

be two monodial functors. A natural transformation u : F → G is called a monodial
natural transformation if for every 2 objects X, Y , in V, we have

uX□uY = uX□Y ,

and also uI = idI′ .

Definition 2.5 (Monodial Functor Categories). For two fixed monodial categories (V,□, I)
and (V′

,□
′
, I

′), there is a category MonCat(V,V′) whose objects are the monodial func-
tors from V to V′, and whose arrows are the monodial natural transformations between
such functors.

Definition 2.6 (Symmetric Monodial Functor Categories). Similarly, given two sym-
metric monodial categories (V,□, I, τ) and (V′

,□
′
, I

′
, τ

′), there is a category
SymMonCat(V,V′) whose objects are the symmetric monodial functors from V to V′,
and whose arrows are the monodial natural transformations between such functors.
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3 Cobordisms
Throughout this set of notes, by the word manifold, I always mean smooth manifold (is
differentiable of class C∞, and unless specified otherwise, we always assume our manifolds
to be compact and equipped with an orientation, but we do not always assume our man-
ifolds to be connected. Closed means compact and without boundary. For convenience,
we will denote manifolds with boundary by capital roman letters (typically M) while
manifolds without boundary are denoted by capital greek letters, like Σ. Manifolds mean
smooth manifolds, map between manifolds are always understood to be smooth maps,
and maps between manifolds of the same dimension are required to preserve orientation.
However, contrary to what is custom in differential topology, we let submanifolds, for
example the boundary, to come equipped with an orientation on their own (instead of
letting the amibent manifold induce one on it).

Definition 3.1 (In-boundaries and Out-boundaries). Let Σ be a closed submanifold of M
of codimension 1, both equipped with an orientation. At a point x ∈ Σ, let {v1, v2, ..., vn−1}
be a positively-oriented basis for Tx(Σ). A vector w ∈ Tx(M) is called a positive normal
if {v1, v2, ..., vn−1, w} is a positively oriented basis for Tx(M). Now, suppose Σ is a con-
nected component of the boundary of M . If a positive normal point inwards, we call Σ
an in-boundary and if it points outwards we call it an out-boundary.

Note that this notion does not depend on the choice of positive normal. Thus, the bound-
ary of a manifold is the union of various in-boundaries and out-boundaries.
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3.1 Intuition on Cobordisms
Intuitively, given 2 closed n − 1-manifolds Σ0 and Σ1, a cobordism from Σ0 to Σ1 is an
oriented n-manifold whose in-boundary is Σ0 and out-boundary is Σ1. However, in order
to allow cobordisms from a given Σ to itself, we need a more relative description.

An (oriented) cobordism from Σ0 to Σ1, where Σ0 and Σ1 are closed n− 1-manifolds, is
an (oriented) n-manifold together with the maps:

Σ0
i
↪−→M

i←−↩ Σ1

such that Σ0 maps diffeomorphically onto the in-boundary of M , and that Σ1 maps
diffeomorphically onto the out-boundary of M . So, there exist the following inclusion
maps:

i0 : Σ0
i
↪−→M,

i1 : Σ1
i
↪−→M

such that Σ0 maps diffeomorphically to the in-boundary of M and Σ1 maps diffeomor-
phically to the out-boundary of M . We will write this cobordism as:

Σ0 =⇒ Σ1.

Here is an example of a cobordism from a pair of circles Σ0 to another pair of circles, Σ1:

3.2 Cobordisms from Σ to itself
We can get a cobordism from a closed n − 1 manifold Σ to itself by constructing the
cylinder of Σ, Σ x I, and taking the obvious maps:

Σ→̃Σ x {0} ⊂ Σ x I,
Σ→̃Σ x {1} ⊂ Σ x I.
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The same construction serves to give a cobordism between any pair of (n− 1)-manifolds
Σ0 to Σ1, which are diffeomorphic to Σ:

Σ0 → Σ→ Σ x {0} ⊂ Σ x I,
Σ1 → Σ→ Σ x {1} ⊂ Σ x I.

From the construction above, we can see that any diffeomorphism Σ x I → M will also
define a cobordism M : Σ0 =⇒ Σ1. So, in conclusion, for any 2 diffeomorphic manifolds
Σ0 and Σ1, there exists a cobordism from Σ0 to Σ1. In fact, the cobordism is not unique.
One of the main goals of many fields in mathematics is to obtain a classification of the
objects of study in their respective field. So, naturally now we will introduce the notion
of classification of cobordisms using equivalence relations.

3.3 Equivalent Cobordisms
Two cobordisms from Σ0 to Σ1, M,M

′ are called equivalent if there is a diffeomorphism
from M to M ′ making this diagram commute:

Note that the source and target manifolds Σ0 and Σ1 are completely fixed, not just up
to diffeomorphism.

3.4 U-tubes
U-tubes are cylinders with reversed orientation on one of the boundaries: take a closed
manifold Σ and map it onto the ends of the cylinder Σ x I, in such a way that both
boundaries are in-boundaries (then the out-boundary is empty). We will often draw such
a cylinder like this:



3. COBORDISMS 9

3.5 Decomposition of Cobordisms
An Important feature of a cobordism M is that you can decompose it: this means intro-
ducing a sub-manifold Σ which splits M into two parts, with all the in-boundaries in one
part and all the out-boundaries in the other; Σ must be oriented such that its positive
normal points toward the out-part.

Construction of such a manifold: take a smooth map f : M → [0, 1] such that f−1(0) = Σ0
and f−1(1) = Σ1, and let Σt be the inverse image of a regular value t, oriented such that
the positive normal points towards the out-boundaries, just as the positive normal of
t ∈ [0, 1] points towards 1. We know that such a map, called the morse map, exists
for every smooth compact manifold with boundaries (From John Milnor’s Lectures on
h-Cobordisms).
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The result is two new cobordisms: one from Σ0 to Σt given by the piece M[0,t] := f−1([0, t])
and another from Σt to Σ1 given by the piece M[t,1] := f−1([t, 1]).

3.6 Giving cobordisms a category
Now, we shall assemble cobordisms as a category in the most natural way possible:

• Objects: closed oriented (n− 1)-manifolds

• Morphisms: oriented cobordisms as defined earlier

So, we need to show how to compose two cobordisms (and check associativity), and we
need to find identity arrows for each object. Given one cobordism M0 : Σ0 =⇒ Σ1
and another M1 : Σ1 =⇒ Σ2, then the composition M0M1 : Σ0 =⇒ Σ2 should be
obtained by gluing together the manifolds M0 and M1 along Σ1. This is a manifold with
in-boundary Σ0 and out-boundary Σ2, and Σ1 sits inside it as a submanifold:

However this construction M0M1 := M0⊔M1 is not well defined in the category of smooth
manifolds. It is well-defined as a topological manifold, but there is no canonical choice
of smooth structure near the gluing locus Σ1: the smooth structure turns out to be well-
defined only up to diffeomorphism. (And not even unique diffeomorphism.)Concerning
identity arrows, the identity ought to be a cylinder of height zero, but such a ‘cylinder’
is not an n-manifold.
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3.7 Gluing Cobordism Classes
Both problems are solved by using the following theorem, which tells us that the smooth
structure turns out to be well-defined only up to diffeomorphism and hence passing to
diffeomorphism classes of cobordisms relative the boundary (fixing the boundary point-
wise), we can have a well-defined composition operation on the category of cobordisms
(classes).

Theorem 3.1. Let W be a smooth compact n dimensional manifold with 2 boundary
components V0, V1 and W

′ be another smooth compact n dimensional manifold with 2
boundary components V ′

1 , V
′

2 and h : V1 → V
′

1 a diffeomorphism. Then, there exists a
smooth structure S for W ∪hW

′ compatible with the given structure on W and W ′. S is
unique up to a diffeomorphism leaving V0, h(V1) = V

′
1 , and V ′

2 fixed.

Proof. To prove the existence of the smooth structure, we will use the following lemma:
Theorem 3.2 (Collar Neighborhood Theorem). Let W be a compact smooth manifold
with boundary. There exists a neighborhood of Bd(W ) (called a collar neighborhood) dif-
feomorphic to Bd(W ) x [0, 1).

By the Collar Neighborhood Theorem, there exist collar neighborhoods U1, U
′
1 of V1, V

′
1

in W,W
′ and diffeomorphisms g1 : V1 x [0, 1) → U1, g2 : V ′

1 x [1, 2) → U
′
1, such that

g1(x, 1) = x, where x ∈ V1, and g2(y, 1) = y, where y ∈ V
′

1 . Let j : W → W ∪h W
′ ,

j
′ : W ′ → W ∪h W

′ be the inclusion maps in the definition of W ∪h W
′ . Define a map

g : V1 x (0, 2)→ W ∪hW
′ by:

g(x, t) = j(g1(x, t)), 0 < t ≤ 1
g(x, t) = j

′(g2(h(x), t)), 1 ≤ t < 2.

To define a smooth structure ob a manifold, it suffices to define compatible smooth
structures on open sets covering the manifold. So, note that W ∪h W

′ is covered by
j(W −V1), j

′(W ′−V ′
1 ), and g(V1x(0, 2)), and the smooth structures defined on these sets

by j, j ′ , and g respectively, are compatible. This completes the proof of existence.

Now, we shall show that the smooth structure is unique up to a diffeomorphism leaving
V0, h(V1) = V

′
1 , and V

′
2 fixed. We do this by showing that any smooth structure S on

W ∪h W
′ compatible with the given smooth structure on W and W

′ is isomorphic to a
smoothness structure constructed by pasting together collar neighborhoods of V1 and V ′

1
as above. The uniqueness up to diffeomorphism leaving V0, h(V1) = V

′
1 , and V

′
2 fixed,

then follows essentially from theorem 6.3 of James Munkres’s Elementary Differential
Topology. Now, we will use the following theorem:
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Theorem 3.3 (The Bicollaring Theorem). Suppose that every component of a smooth
submanifold M of W is compact and two-sided. Then, there exists a bicollar neighborhood
of M in W diffeomorphic to M x (−1, 1) in such a way that M corresponds to M x {0}.
By the bicollaring theorem, there exists a bicollar neighborhood of U of j(V1) = j

′(V ′
1 )

in W ∪h W
′ and a diffeomorphism g : V1 x (−1, 1) → U with respect to the smoothness

structure S, so that g(x, 0) = j(x), for x ∈ V1. Then, j−1(U ∩ j(W )) and (j ′)−1(U ∩
j

′(W ′)) are collar neighborhoods of V1 and V
′

1 in W and W
′ . This completes the proof

of uniqueness.

So, the theorem above shows that the composition of two cobordisms is a well-defined
cobordism class. Clearly, this class only depends on the classes of the two original cobor-
disms, not on the cobordisms themselves, so we have a well-defined composition for
cobordism classes.

Moreover, this composition is associative since gluing of topological spaces (the pushout)
is associative. Also, it is easy to prove that the class of a cylinder is the identity cobordism
class for the composition law: it amounts to two observations:

• every cobordism has a part near the boundary where it is diffeomorphic to a cylin-
der.

• the composition of two cylinders is again a cylinder.

3.8 nCob, the category
So, given the:

• Objects: closed oriented (n− 1)-manifolds

• Morphisms: oriented cobordisms classes

and the well-defined operation (gluing) between oriented cobordisms classes, we now have
the category of n cobordisms, denoted as nCob.

It was mentioned how a diffeomorphism ϕ : Σ0 → Σ1 induces a cobordism Cϕ : Σ0 =⇒
Σ1, via the cylinder construction. In fact, this construction is functorial: given two
diffeomorphisms ϕ : Σ0 → Σ1 and ψ : Σ1 → Σ2, we have

CϕCψ = Cϕ◦ψ.
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In particular, a cobordism induced from a diffeomorphism is invertible. Also, the identity
diffeomorphism Σ→ Σ induces the identity cobordism. In other words, the cylinder con-
struction defines a functor from the category of (n − 1)-manifolds and diffeomorphisms
to the category nCob.

3.9 Monodial Structure on nCob

If Σ′ and Σ are two (n− 1) manifolds then the disjoint union Σ ⊔ Σ′ is again an (n− 1)
manifold, and given two cobordisms M : Σ0 =⇒ Σ1 and M

′ : Σ′
0 =⇒ Σ′

1 and, their
disjoint union M ⊔M ′ is naturally a cobordism from Σ0 ⊔ Σ′

0 to Σ1 ⊔ Σ′
1.

The empty nmanifold ∅n is a cobordism ∅n−1 =⇒ ∅n. These structure make (nCob,⊔, ∅n)
into a monoidal category.

The cobordism induced by the twist diffeomorphism Σ ⊔ Σ′ =⇒ Σ′ ⊔ Σ will be called
the twist cobordism (for Σ and Σ′ , denoted TΣ,Σ′ . It is straight-forward to check that the
twist cobordisms satisfy the axioms for a symmetric structure on the monoidal category
(nCob,⊔, ∅n). This is an easy consequence of the fact that the twist diffeomorphism is a
symmetry structure inthe monoidal category of smooth manifolds. So, (nCob,⊔, ∅n) is a
symmetric monoidal category.

3.10 Generators and relations for 2Cob
Theorem 3.4. The monoidal category 2Cob is generated under composition (serial con-
nection) and disjoint union (parallel connection) by the following six cobordisms:

The generators for the 2Cob satisfy the following relations:

• Identity Relations:
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• Skewing in Disc Relations

• Associativity and Coassociativity Relations

• Commutativity and Co-communtative Relations

• Frobenius Relations
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4 Topological Quantum Field Theories
Roughly, a quantum field theory takes as input spaces and space-times and associates
to them state spaces and time evolution operators. The space is modelled as a closed
oriented (n − 1)-manifold, while space-time is an oriented n-manifold whose boundary
represents time 0 and time 1. The state space is a vector space (over some ground field
K), and the time evolution operator is simply a linear map from the state space of time
0 to the state space of time 1. The theory is called topological if it only depends on the
topology of the space-time. This means that ‘nothing happens’ as long as time evolves
cylindrically.

Definition 4.1 (Topological Quantum Field Theory). An n-dimensional topological quan-
tum field theory (TQFT) is a rule A which to each closed oriented (n − 1)-manifold Σ
associates a vector space (Σ)A, and to each oriented cobordism M : Σ0 → Σ1 associates
a linear map MA from Σ0A to Σ1A . This rule A must satisfy the following five axioms.

• Two equivalent cobordisms must have the same image: M ∼= M
′ =⇒ MA = M

′
A.

• The cylinder ΣxI , thought of as a cobordism from Σ to itself, must be sent to the
identity map of Σ(A).

• Given a decomposition M = M
′
M

′′, then MA = (M ′
A) ◦ (M ′′

A) (composition of
linear maps).

• Disjoint Union goes to tensor product: If Σ = Σ′ ⊔ Σ′′, then (Σ)A = Σ′
A ⊗ Σ′′

A.
This must also hold for cobordisms: if M : Σ0 =⇒ Σ1 is the disjoint union of
M

′ : Σ′
0 =⇒ Σ′

1 and M ′′ : Σ′′
0 =⇒ Σ′′

1 , then MA = M
′
A⊗M ′′

A.

• The empty manifold Σ = ∅ must be sent to the ground field K.

The first two axioms express that the theory is topological: the evolution depends only
on diffeomorphism class of space-time. Axiom 4 reflects a standard principle of quantum
mechanics: the state space of two independent systems is the tensor product of the two
state spaces.

The first three axioms will amount to saying that the rule A is a functor. This is the
subject of the next section. Axioms 4 and 5 in turn amount to saying that this functor is
furthermore monoidal. Roughly, a monoidal category is one equipped with a ‘multiplica-
tion’ with neutral object. In our case, for manifolds and cobordisms the ‘multiplication’
is disjoint union, and the neutral object for that operation is the empty manifold. For
vector spaces, the ‘multiplication’ is the tensor product, and the neutral object is the
ground field. A monoidal functor is one that preserves such monoidal structure.
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Consider the category VectK of vector spaces over a field K and K-linear maps. Equipped
with tensor product as ‘paralleling’, with the ground field as neutral space, and with the
canonical twist map σ which interchanges the two factors of a tensor product, (VectK, ⊗,
K,σ) is also a symmetric monoidal category. A monoidal functor (between two monoidal
categories) is one that preserves the monoidal structure. A symmetric monoidal func-
tor between two symmetric monoidal categories is one that sends the symmetry of one
monoidal category to the symmetry of the other.

Definition 4.2 (Functorial Definition of Topological Quantum Field Theory). An n-
dimensional topological quantum field theory is a symmetric monoidal functor from (nCob,
⊔, ∅, T ) to (VectK, ⊗, K,σ).

5 Frobenius Algebras
Definition 5.1 (Frobenius Algebra). A Frobenius algebra is a K-algebra A of finite
dimension, equipped with a linear functional ϵ : A → K whose nullspace contains no
nontrivial left ideals. The functional ϵ ∈ A∗ is called a Frobenius form.

Definition 5.2 (K-Algebra). A K-algebra is a K-vector space A together with two K-
linear maps:

µ : A⊗ A → A,
η : K → A

such that these three diagrams commute:

Here, the symbol idA stands for the identity linear map A → A, and the diagonal maps
without labels are scalar multiplication which are canonical isomorphisms.

Every linear functional ϵ : A → K (Frobenius or not) determines canonically a pairing
A ⊗ A → K, namely x ⊗ y → (xy)ϵ. Clearly this pairing is associative. Conversely,
given an associative pairing A⊗A→ K, denoted x⊗ y →< x|y >, a linear functional is
canonically determined, namely
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A → K
a 7→< 1A|a >=< a|1A > .

This shows that there is a one-to-one correspondence between linear functionals on A
and associative pairings.

Definition 5.3 (Associate Pairings). A pairing M ⊗N → K is said to be associative if
the following diagram commutes:

In other words, the pairing x⊗ y 7→< x|y > is associative when
< xa|y >=< x|ay >,∀x ∈M,a ∈ A, y ∈ N.

Theorem 5.1. Let ϵ : A → K be a linear functional and let < x|y > denote the corre-
sponding associative pairing A⊗ A→ K. Then the following are equivalent:

• The pairing is nondegenerate.

• Null(ϵ) contains no nontrivial left ideals.

• Null(ϵ) contains no nontrivial right ideals.

Definition 5.4 (Symmetric Frobenius Algebras). A Frobenius algebra A is called a sym-
metric Frobenius algebra if one (and hence all) of the following equivalent conditions
holds:

• The Frobenius form ϵ : A → K is central; this means that (ab)ϵ = (ba)ϵ for all
a, b ∈ A.

• The pairing < a|b > is symmetric (i.e. < a|b >=< b|a > ∀a, b ∈ A).
Clearly, commutative frobenius algebras are always symmetric.
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5.1 Coalgebras on Frobenius Algebras
The notion of coalgebra over K is the opposite of the notion of K-algebra, in the sense
that the structure maps and the diagrams for their axioms are all just reversed. So a
coalgebra over K is a vector space A together with two K-linear maps:

δ : A→ A⊗ A, ϵ : A→ K,

such that the following diagrams commute:

The map δ is called comultiplication, and ϵ : A → K is called the counit (or sometimes
the augmentation). The axioms expressed in the diagrams are called coassociativity and
the counit condition.

It is not a coincidence that we have denoted the counit by ϵ just like the Frobenius form.
The main result of importance to us states that every Frobenius algebra has a unique
coalgebra structure for which the Frobenius form is the counit, and which is A-linear and
conversely, given a k-algebra, equipped with an A-linear coalgebra structure, then the
counit is a Frobenius form. This gives another characterisation of Frobenius algebras –
the most important one for our purposes. We will give a quite elementary proof, which
does not even involve coordinates. It is based on a graphical calculus.

5.2 Graphical Calculus
The first observation is that we do not have many pieces to move. If we want to construct
a comultiplication on our Frobenius algebra A, all we have to make do with are the fol-
lowing maps: the multiplication µ : A⊗ A→ A, the unit η : K→ A, and the Frobenius
form ϵ : A → K as well as the Frobenius pairing β : A ⊗ A → K, not forgetting the
identity map idA : A→ A. These maps come with certain properties which are expressed
as commutative diagrams. Our task is to combine these arrows in a natural way to con-
struct a comultiplication, and then combine all the diagrams in order to establish the
diagrams that express the properties we want from this comultiplication. . The second
observation is that all of these building blocks are maps between tensor powers of A; let
An denote the tensor product of n copies of A. Of course the ground field appears in
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the maps, but recall that it is natural to consider K as the zeroth tensor power of A, the
tensor product with zero factors.

Let us first draw the maps that define a K-algebra:

The maps are the unit map, identity map and mulitplication map from left to right.

The symbol corresponding to each K-linear map ϕ : Am → An has m boundaries on the
left (input holes): one for each factor of A in the source, and ordered such that the first
factor in the tensor product corresponds to the bottom input hole and the last factor
corresponds to the top input hole. If m = 0 we simply draw no in-boundary. Similarly,
there are n boundaries on the right (output holes) which correspond to the target An,
with the same convention for the ordering. The tensor product of two maps is drawn as
the (disjoint) union of the two symbols – one placed above the other, in accordance with
our convention for ordering. Indeed, the tensor product of two maps is defined by letting
the two maps operate independently on their respective arguments, so it is natural that
we draw this as two parallel tubes or, in the machine metaphor, as two parallel processes
– and similarly for multiple tensor products:

Now, let’s express the properties that K-algebra axioms satisfy in terms of graphs.
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We now want to express Frobenius structure in graphical language. The linear form
ϵ : A→ K, and the second a bilinear pairing β : A⊗ A→ K are depicted as:

We will draw right away the relation between these 2 maps:

which can be described as < x|y >= (xy)ϵ and < 1A|x >= xϵ =< x|1A >.

5.3 Category of Frobenius Algebras
A Frobenius algebra homomorphism ϕ : (A, ϵ) → (A, ϵ) between two Frobenius algebras
is an algebra homomorphism which is at the same time a coalgebra homomorphism. In
particular, it preserves the Frobenius form, in the sense that ϵ = ϕϵ. Let FAK denote
the category of Frobenius algebras over K and Frobenius algebra homomorphisms, and
let cFAK denote the full subcategory of all commutative Frobenius algebras.



6. MONOIDS AND MONODIAL CATEGORIES 22

5.4 Tensor Product of Frobenius Algebras
Given two algebras A and A′ , consider their tensor product A⊗A′ as vector spaces. Now
component-wise multiplication makes A⊗ A′ into an algebra:

A⊗ A′ ⊗ A⊗ A′ → A⊗ A′

(x⊗ y)⊗ (x′ ⊗ y′)→ xx
′ ⊗ yy′

.

Note that A only interacts with A, and A′ only with A′ , and that the twist map is crucial
in order to construct the new multiplication map from the existing maps.

Also, the tensor product of two coalgebras is again a coalgebra in a natural way. The
figures are just the mirror images of those above. The tensor product of two Frobenius
algebrasis in a natural way again a Frobenius algebra.

6 Monoids and Monodial Categories
Definition 6.1 (Monoid). A monoid is a set M with a binary operation (composition
law) which is associative and has a neutral element. If we employ infix notation for the
composition (with a dot as infix), writing (a, b)→ a ·b, then the associativity axiom states
that for every three elements a, b, c ∈M we have (a · b) · c = a · (b · c). The neutral element
is an element e ∈ M such that for all a ∈ M we have e · a = a = a · e. It is useful to
express this in terms of commutative diagrams. A monoid is a set M together with two
functions:

µ : MxM →M

η : 1→M

such that these diagrams commute, similar to the cases above. We will refer to such a
monoid by writing the triple (M,µ, η).

Definition 6.2 (Monoid Homomorphism). A monoid homomorphism ϕ : M → M is a
function that commutes with all the structure. So, in terms of compositions, we have

(aϕ) · (bϕ) = (a · b)ϕ,

and also

eϕ = e
′
.
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The composition of two monoid homomorphisms is again a monoid homomorphism, and
that the identity map is a monoid homomorphism, so altogether: there is a category
denoted Mon whose objects are the monoids and whose arrows are the monoid homo-
morphisms. We write Mon(X, Y ) for the set of monoid homomorphisms from X to Y .
A monoid homomorphism is called an isomorphism of monoids if there exists a two-sided
inverse in Mon.

Definition 6.3 (The Product of 2 Monoids). If M and M
′ are two monoids, then the

product set MÖM ′ has a canonical monoid structure, namely the one given by component-
wise multiplication. That is, the multiplication on MÖM is given by:

(MxM
′)x(MxM

′)→ (MxM
′)

(x, x′), (y, y′) 7→ (x · y, x′ · y′)

The unit map 1→MxM
′ is simply the product of the two unit maps 1→M and 1→M

′.

Definition 6.4 (Commutative Monoids). A monoid (M, ·, 1) is called commutative if for
all elements a, b we have a · b = b · a. In terms of arrows and diagrams: a monoid is
commutative if the multiplication µ : MxM →M is compatible with the twist map.
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