# A Model-Informed Deep Learning Algorithm for Solving Inverse Problems

Arayinth Krishnan Rayi

KANSAS STATE UNIVERSITY

**AMS Central Sectional Meeting Spring 2025** 

March 29-30, 2025 University of Kansas

Joint work with Dinh-Liem Nguyen

# Outline

- Introduction
- 2 Stable Imaging Function
- Numerical Results
- 4 Extension to Inverse Scattering Problems

# Outline

- Introduction
- Stable Imaging Function
- 3 Numerical Results
- 4 Extension to Inverse Scattering Problems

#### Introduction



**Direct source problem:** Given a source that radiates waves, determine the waves.

**Applications:** Radar, non-destructive testing, geophysical exploration, medical imaging, ...

# Inverse source problem

• Let  $f \in L^2(\Omega)$ , where  $\Omega$  is a large disk such that  $supp(f) = D \subset \Omega$ .

$$\begin{cases} \Delta u + k^2 u = \mathbf{f}, & \text{in } \mathbb{R}^2 \\ \frac{\partial u}{\partial r} - iku = \mathcal{O}\left(\frac{1}{r^2}\right), & \text{as } r = |x| \to \infty. \end{cases}$$

• Inverse problem: Given  $u(\cdot, k)|_{\partial\Omega}$  for  $k \in [k_1, k_2]$ , determine f.

#### Uniqueness and stability of solution for the inverse source problem:

 Bao, G., Lin, J., & Triki, F. (2010). A multi-frequency inverse source problem. Journal of Differential Equations, 249, 3443-3465.

#### Theorem 1

Given a set of real numbers  $[k_1, k_2]$ , the measurements  $u(\cdot, k)|_{\partial\Omega}$ , where  $k \in [k_1, k_2]$ , determine uniquely the source function f.

#### Numerical methods

#### Traditional numerical schemes (far-from-complete list):

- Bao, G., Lin, J., & Triki, F. (2011). Numerical solution of the inverse source problem for the Helmholtz Equation with multiple frequency data.
- Acosta, S., Chow, S., Taylor, J., & Villamizar, V. (2012). On the multi-frequency inverse source problem in heterogeneous media. Inverse Problems, 28.
- Eller, M., & Valdivia, N. (2009). Acoustic source identification using multiple frequency information. Inverse Problems, 25, 115005.
- Bao, G., Lin, J., & Triki, F. (2010). A multi-frequency inverse source problem. Journal of Differential Equations, 249, 3443-3465.
- Kress, R., & Rundell, W. (2013). Reconstruction of extended sources for the Helmholtz equation. Inverse Problems, 29.
- Karamehmedovi'c, M., Kirkeby, A., & Knudsen, K. (2018). Stable source reconstruction from a finite number of measurements in the multi-frequency inverse source problem. Inverse Problems, 34.
- Eibert, T.F. (2023). Multiple-Frequency Preconditioned Iterative Inverse Source Solutions.
   IEEE Transactions on Microwave Theory and Techniques, 71, 2842-2853.

Severely illposed ⇒ numerical schemes require regularization strategies

# Deep learning methods

#### Deep learning-based algorithms (far-from-complete list):

- Dong, Y., Sadiq, K., Scherzer, O., & Schotland, J.C. (2024). Computational inverse scattering with internal sources: a reproducing kernel Hilbert space approach. Physical review. E, 110 6-2, 065302.
- Meng, S., & Zhang, B. (2024). A Kernel Machine Learning for Inverse Source and Scattering Problems. SIAM J. Numer. Anal., 62, 1443-1464.
- Zhang, H., & Liu, J. (2023). Solving an inverse source problem by deep neural network method with convergence and error analysis. Inverse Problems, 39.

Solve inverse source problems with "internal" data!

# Proposed Algorithm

We developed a 2-step **unsupervised** deep learning algorithm to solve the inverse source problem:

- Step 1: Convert the boundary data into an imaging function  $\mathcal{I}(z)$  which encodes geometrical information about f.
- Step 2: Use  $\mathcal{I}(z)$  as input for training. A model equation for  $\mathcal{I}(z)$  and f is employed to train a neural network which predicts f.



# Outline

- Introduction
- 2 Stable Imaging Function
- 3 Numerical Results
- 4 Extension to Inverse Scattering Problems

# Stable Imaging Function

• For each  $k \in [k_1, k_2]$ , for  $z \in \mathbb{R}^2$ , define the function

$$\mathcal{I}(z,k) := \int_{\partial\Omega} u(x,k) \overline{\Phi_k(x,z)} \, dS(x),$$

where  $\Phi_k(x, z)$  denotes the Green's function.

We assume the noisy data  $u_{\delta}$  satisfies

$$||u-u_{\delta}||_{L^{2}(\partial\Omega\times\mathbb{S})}\leq \delta||u||_{L^{2}(\partial\Omega\times\mathbb{S})}.$$

#### Theorem 2

Let  $\mathcal{I}_{\delta}(z)$  the imaging function with noisy data  $u_{\delta}$ . Then

$$|\mathcal{I}(z) - \mathcal{I}_{\delta}(z)| \leq C\delta$$
, for all  $z \in \mathbb{R}^2$ ,

where C is a positive constant which is independent of z and  $\delta$ .

# Significance of the model equation

#### Theorem 3

The imaging function I(z) satisfies

$$\mathcal{I}(z,k) = \frac{1}{4k} \int_{\Omega} J_0(k|y-z|) f(y) dy$$

Proof: Using the volume potential and the Helmholtz-Kirchhoff identity.

#### Significance:

- A simple and nice connection between  $\mathcal{I}(z)$  and f.
- This equation will be used as a model equation in training our neural network with data  $\mathcal{I}(z)$ .

### Model Informed Neural Network

#### Key Ideas:

- $\mathcal{I}(z)$  can be obtained robustly and inexpensively from (noisy) scattering data.
- Use input data  $\mathcal{I}(z)$  and the model equation to train neural network  $f_{\Theta}$  to predict f.

# Training Process

Ansatz Space/Hypothesis space  ${\cal H}$  : Space of Neural Networks with the following configuration:

- Depth of Neural Network: 4
- Width of Neural Network: 64
- Activation Functions: Hyperbolic Tangent Function

# Training Process

Ansatz Space/Hypothesis space  ${\cal H}$  : Space of Neural Networks with the following configuration:

- Depth of Neural Network: 4
- Width of Neural Network: 64
- Activation Functions: Hyperbolic Tangent Function

With the chosen space  $\mathcal{H}$  in place, our physics-based loss functional  $\mathcal{L}[\cdot]$  is:

$$\mathcal{L}:\mathcal{H}\to\mathbb{R}$$

$$f_{\theta} \mapsto \frac{1}{M} \sum_{i=1}^{M} \left( \frac{1}{N} \sum_{j=1}^{N} \left[ \mathcal{I}(z_j, k_i) - \frac{1}{4k_i} \int_{\Omega} J_0(k_i|z_j - y|) f_{\theta}(y) dy \right] \right).$$

# Training Process

Ansatz Space/Hypothesis space  ${\mathcal H}$  : Space of Neural Networks with the following configuration:

- Depth of Neural Network: 4
- Width of Neural Network: 64
- Activation Functions: Hyperbolic Tangent Function

With the chosen space  $\mathcal{H}$  in place, our physics-based loss functional  $\mathcal{L}[\cdot]$  is:

$$\mathcal{L}:\mathcal{H} \to \mathbb{R}$$

$$f_{\theta} \mapsto \frac{1}{M} \sum_{i=1}^{M} \left( \frac{1}{N} \sum_{j=1}^{N} \left[ \mathcal{I}(z_j, k_i) - \frac{1}{4k_i} \int_{\Omega} J_0(k_i | z_j - y |) f_{\theta}(y) dy \right] \right).$$

Minimization Problem:

$$\min_{w_{\theta} \in \mathcal{H}} \frac{1}{M} \sum_{i=1}^{M} \left( \frac{1}{N} \sum_{j=1}^{N} \left[ \mathcal{I}(z_j, k_i) - \frac{1}{4k_i} \int_{\Omega} J_0(k_i | z_j - y |) w_{\theta}(y) dy \right] \right)$$

M | 21 0005 | 10 /06

# Visual Representation

Let 
$$z = (x, y)^{\top} \in \mathbb{R}^2$$
.



Figure 2: Visual representation of the model-informed neural network

# Outline

- Introduction
- Stable Imaging Function
- Numerical Results
- 4 Extension to Inverse Scattering Problems

#### Numerical results

Reconstruction with 20% artifical noise introduced to the boundary data:



#### Review

We have developed an unsupervised, model-informed deep learning algorithm to solve inverse source problems

- ullet In step 1, regularization is done automatically  $\Longrightarrow$  no need for additional regularization
- The algorithm incorporates a simple model integral equation into the deep learning process instead of PDE models, eliminating the need for automatic differentiation 

  computationally cheaper
- The method is highly robust against noisy data, ensuring stability and accuracy in practical applications.

## Outline

- Introduction
- 2 Stable Imaging Function
- 3 Numerical Results
- 4 Extension to Inverse Scattering Problems

# Extension - Inverse Scattering Problems

Can be extended to solve inverse scattering problems too

# Extension - Inverse Scattering Problems

Can be extended to solve inverse scattering problems too



**Inverse scattering problem:** Determine the *scattering object* from boundary measurements of scattered wave (for several incident waves).

**Applications:** Radar, non-destructive testing, geophysical exploration, medical imaging, ...

#### Mathematical Formulation

• Let  $\eta: \mathbb{R}^2 \to \mathbb{R}$  be bounded function satisfying  $\eta = 0$  in  $\mathbb{R}^2 \setminus \overline{D}$ . Let  $\Omega$  be large disk such that  $D \subset \Omega$ . Consider incident waves

$$u^{in}(x,d) = e^{ikd \cdot x}$$

where  $d \in \mathbb{S}^1 := \{ x \in \mathbb{R}^2 : |x| = 1 \}.$ 

Consider the following model problem

$$\begin{cases} \Delta u + k^2 (1 + \eta(x)) u = 0, & \text{in } \mathbb{R}^2 \\ u = u^{in} + u^{sc}, \\ \lim_{r \to \infty} r^{\frac{n-1}{2}} \left( \frac{\partial u^{sc}}{\partial r} - iku^{sc} \right) = 0, & r = |x|. \end{cases}$$

• Inverse Problem: Given  $u^{sc}(\cdot,d)|_{\partial\Omega}$  for all  $d\in\mathbb{S}^1$ , determine  $\eta$ .



# Deep Learning for inverse scattering

#### Supervised learning-based algorithms (far-from-complete list)

- Wei, Z., & Chen, X. (2019). Deep-Learning Schemes for Full-Wave Nonlinear Inverse Scattering Problems. IEEE Transactions on Geoscience and Remote Sensing, 57, 1849-1860.
- Khoo, Y., & Ying, L. (2018). SwitchNet: a neural network model for forward and inverse scattering problems. ArXiv, abs/1810.09675.
- Sanghvi, Y., Kalepu, Y., & Khankhoje, U.K. (2020). Embedding Deep Learning in Inverse Scattering Problems. IEEE Transactions on Computational Imaging, 6, 46-56.
- Chen, X., Wei, Z., Li, M., & Rocca, P. (2020). A Review of Deep Learning Approaches for Inverse Scattering Problems (Invited Review). Progress In Electromagnetics Research.
- Gao, Y., Liu, H., Wang, X., & Zhang, K. (2021). On an artificial neural network for inverse scattering problems. J. Comput. Phys., 448, 110771.
- Zhou, M., Han, J., Rachh, M., Borges, C. (2022). A Neural Network Warm-Start Approach for the Inverse Acoustic Obstacle Scattering Problem. ArXiv, abs/2212.08736.
- ...

Reconstruct unknown scattering objects that are similar or closely related to known training datasets!

# Deep Learning for inverse scattering

#### Unsupervised learning: Physics Informed Neural Networks (PINNs)

- Raissi, M., Perdikaris, P., & Karniadakis, G.E. (2019). Physics-informed neural networks:
   A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 378, 686-707.
- Chen, Y., Lu, L., Karniadakis, G.E., & Dal Negro, L. (2019). Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Optics express, 28 8, 11618-11633.
- Chen, Y., & Dal Negro, L. (2021). Physics-informed neural networks for imaging and parameter retrieval of photonic nanostructures from near-field data. APL Photonics.
- Pokkunuru, A., Rooshenas, P., Strauss, T., Abhishek, A., & Khan, T.R. (2023). Improved Training of Physics-Informed Neural Networks Using Energy-Based Priors: a Study on Electrical Impedance Tomography. International Conference on Learning Representations.

Study inverse design problems with "internal" data!

# **Imaging Function**

• For  $z \in \mathbb{R}^2$ , define the function

$$\mathcal{I}(z) := \int_{S} \int_{\partial \Omega} u^{sc}(x,d) \overline{\Phi(x,z)} \, ds(x) \, \Phi^{\infty}(d,z) \, ds(d),$$

where  $\Phi(x,z)$  and  $\Phi^{\infty}(d,z)$  denote the Green's function and its scattering amplitude respectively.

With the Helmholtz-Kirchhoff Identity, Funk-Hecke Formula and Born approximation, we can derive

$$\mathcal{I}(z) - \frac{k\pi}{2} \int_D J_0^2(k|y-z|) \, \eta(y) \, dy = 0.$$

- A simple and nice connection between  $\mathcal{I}(z)$  and  $\eta$ .
- This equation will be used as a (simplified) model equation in training our neural network with data  $\mathcal{I}(z)$ .

←□▶ ←□▶ ← □ ▶ ← □ ▶ ← □ ● ・ の ♀

# Stable Imaging Function

We assume the noisy data  $u^{\mathit{sc}}_{\delta}$  satisfies

$$\|u^{\mathsf{sc}} - u^{\mathsf{sc}}_{\delta}\|_{L^2(\partial\Omega \times \mathbb{S})} \le \delta \|u^{\mathsf{sc}}\|_{L^2(\partial\Omega \times \mathbb{S})}.$$

#### Theorem 4

Let  $I_{\delta}(z)$  the imaging function with noisy data  $u_{\delta}^{sc}$ . Then

$$|\mathcal{I}(z) - \mathcal{I}_{\delta}(z)| \leq C\delta$$
, for all  $z \in \mathbb{R}^2$ ,

where C is a positive constant which is independent of z and  $\delta$ .

# Some numerical results



#### Review

We have developed an unsupervised, model-informed deep learning algorithm to solve inverse scattering problems

- Unsupervised greater generalisability
- Similar to the case of the algorithm for the inverse source problem, the algorithm is computationally cheap
- Again, the method is highly robust against noisy data, ensuring stability and accuracy in practical applications.

This work was partly supported by the NSF grant DMS-2208293



# Thank you for listening!