

Aravinth Krishnan Ravi

arav0006@ksu.edu • <https://hippyhippohops.github.io/> • <https://github.com/hippyhippohops>

Education

Kansas State University

PhD in Mathematics

Research Interests: Deep learning methods to solve inverse problems

Advisor: Dinh-Liem Nguyen

Manhattan, KS

June 2027

Nanyang Technology University

Bachelor of Science (Honours with Distinction) in Mathematical Sciences (Pure Mathematics)

Thesis title: *A conjecture for the eigenvalues of pseudo-Anosov mappings of surfaces*

Advisor: Andrew James Kricker

Singapore

June 2022

Awards

Codeforces - Rank: Pupil

Spring 2025

Kansas State University AI Symposium: Humans and Machines, Best Poster - 3rd Place

Fall 2025

Dr. William L. Stamey Mathematics Scholarship

Fall 2025

Nanyang Technological University President Research Scholar

AY 2021/22

Nanyang Technological University President Research Scholar

AY 2020/21

Publications

In Preparation

- **Aravinth K. Ravi**, N. Nguyen, D.L. Nguyen - Fourier Model-Based Neural Networks for the Inverse Source Problem, 2025
- A. Ghanaatian, **Aravinth K. Ravi**, D. Caragea, N. Albin, and D. Rolles - Neural Network Based Molecular Structure Retrieval from Coulomb Explosion Imaging Data, 2025

Research Experience

Kansas State University

Manhattan, KS

Graduate Research Assistant

- Applied graph neural networks and autoencoders networks to recover atomic positions from its final trajectories using experimental data

Nanyang Technological University

Singapore

Student Researcher

Jan 2025 – Current

- Implemented a high-performance OOP Python algorithm for large-scale eigenvalue computations to test a conjecture in low-dimensional topology

Institute for Infocomm Research, (A*STAR)

Remote

Machine Learning Intern

July 2021 – Dec 2021

- Designed and deployed predictive regression models to forecast asset lifetimes to reduce maintenance downtime and decrease costs

Invited Talks

10th Annual Meeting, SIAM Central States Section, University of Arkansas

Fall 2025

Fourier Model-Based Neural Network for the 3D Inverse Source Problem

Contributed Talks

International Mathematics and Statistics Student Research Symposium (Virtual) <i>A Model-Informed Deep Learning Algorithm for Solving Inverse Problems</i>	Spring 2025
American Mathematical Society (AMS) Central Sectional Meeting, University of Kansas <i>A Model-Informed Deep Learning Algorithm for Solving Inverse Problems</i>	Spring 2025

Poster Presentation

Research and the State, Kansas State University K-State AI Symposium, Kansas State University	Fall 2025
	Fall 2025

Undergraduate mentoring

Directed Reading Program - Connor Green Topic: <i>Introduction to Trajectory Optimization</i>	Fall 2025
--	-----------

Summer School

Applied Harmonic Analysis and Machine Learning Summer School, Universit`a di Genova, Italy OIST-Oxford-SLMath School on Analysis of Partial Differential Equations, Okinawa Institute of Science and Technology, Japan Statistical Learning Theory Course, Universit`a di Genova, Italy	Fall 2024 Summer 2024 Summer 2024
--	---

Teaching

Spring Mathematical Modelling Seminar Applied Matrix Theory Calculus I	Fall 2022 Fall 2022 Fall 2025
--	-------------------------------------

Skills

Technical: Matlab, Python (Tensorflow, PyTorch NumPy, scikit-learn, Pandas, SciPy) Language: English (Fluent)	
--	--